×

zbMATH — the first resource for mathematics

Material growth in thermoelastic continua: theory, algorithmics, and simulation. (English) Zbl 1227.74018
Summary: A theoretical formulation of stress-induced volumetric material growth in thermoelastic continua is developed. Material growth is regulated by a three-surface activation criterion and corresponding flow rules. A simple model is proposed based on this formulation and its algorithmic implementation, including a method for solving the underlying differential/algebraic equations for growth, is examined in the context of an implicit finite element method. Selected numerical simulations are presented that showcase the predictive capacity of the model for both soft and hard biomaterials.

MSC:
74F05 Thermal effects in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Software:
FEAP; FEAPpv
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Taber, L.A., Biomechanics of growth, remodeling, and morphogenesis, Appl. mech. rev., 48, 487-545, (1995)
[2] Wolff, J., The law of bone remodelling, (1986), Springer-Verlag Berlin
[3] Roesler, H., The history of some fundamental concepts in bone biomechanics, J. biomech., 20, 1025-1034, (1987)
[4] Hayes, W.C.; Snyder, B., Towards a quantitative formulation of wolff’s law in trabecular bone, (), 43-68
[5] Cowin, S.C., The false premise in wolff’s law, (), 30.1-30.15
[6] Liu, S.Q.; Fung, Y.C., Relationship between hypertension, hypertrophy and opening angle of zero-stress state of arteries following aortic constriction, J. biomech. engrg., 111, 325-335, (1989)
[7] Fung, Y.C., Biomechanics: motion, flow, stress, growth, (1990), Springer New York · Zbl 0743.92007
[8] Helmlinger, G.; Netti, P.A.; Lichtenbeld, H.C.; Melder, R.J.; Jain, R.K., Solid stress inhibits the growth of multicellular tumor spheroids, Nat. biotechnol., 15, 778-783, (1997)
[9] Humphrey, J.D., Stress, strain, and mechanotransduction in cells, J. biomech. engrg., 123, 638-641, (2001)
[10] Hsu, F., The influences of mechanical loads on the form of a growing elastic body, J. biomech., 1, 303-311, (1968)
[11] Cowin, S.C.; Hegedus, D.H., Bone remodeling I: theory of adaptive elasticity, J. elast., 6, 313-326, (1976) · Zbl 0335.73028
[12] Lubarda, V.A.; Hoger, A., On the mechanics of solids with a growing mass, Int. J. sol. struct., 39, 4627-4664, (2002) · Zbl 1045.74035
[13] Epstein, M.; Maugin, G.A., Thermomechanics of volumetric growth in uniform bodies, Int. J. plast., 16, 951-978, (2000) · Zbl 0979.74006
[14] Kuhl, E.; Steinmann, P., Mass- and volume-specific views on thermodynamics for open systems, Proc. R. soc. London A, 459, 2547-2568, (2003) · Zbl 1092.80500
[15] R. Skalak, Growth as a finite displacement field, in: D.E. Carlson, R.T. Shield (Eds.), Proceedings of the IUTAM Symposium on Finite Elasticity, The Hague, 1981, pp. 347-355. IUTAM Symposium, Bethlehem, PA, USA, Martinus Nijhoff, 1980.
[16] Skalak, R.; Dasgupta, G.; Moss, M., Analytical description of growth, J. theor. biol., 94, 555-577, (1982)
[17] Rodriguez, E.K.; Hoger, A.; McCulloch, A.D., Stress-dependent finite growth in soft elastic tissues, J. biomech., 27, 455-467, (1994)
[18] Kröner, E., Allgemeine kontinuumstheorie der versetzungen und eigenspannungen, Arch. rat. mech. anal., 4, 273-334, (1960) · Zbl 0090.17601
[19] Lee, E.H., Elastic – plastic deformation at finite strains, ASME J. appl. mech., 36, 1-6, (1969) · Zbl 0179.55603
[20] Ambrosi, D.; Guana, F., Stress-modulated growth, Math. mech. sol., 12, 319-342, (2007) · Zbl 1149.74040
[21] Garikipati, K.; Arruda, E.M.; Grosh, K.; Narayanan, H.; Calve, S., A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics, J. mech. phys. sol., 52, 1595-1625, (2004) · Zbl 1159.74381
[22] Kuhl, E.; Steinmann, P., Theory and numerics of geometrically non-linear open system mechanics, Int. J. numer. meth. engrg., 58, 1593-1615, (2003) · Zbl 1032.74504
[23] Guillou, A.; Ogden, R.W., Growth in soft biological tissue and residual stress development, (), 47-62
[24] W. Noll, The foundations of classical mechanics in the light of recent advances in continuum mechanics, in: L. Henkin, P. Suppes, A. Tarski (Eds.), Foundations of the Axiomatic Method with Special Reference to Geometry and Physics, Amsterdam, 1959, pp. 266-281. International symposium, UC-Berkeley, Berkeley, CA, USA, North-Holland, 1957.
[25] Casey, J.; Naghdi, P.M., A prescription for the identification of finite plastic strain, Int. J. engrg. sci., 30, 1257-1278, (1992) · Zbl 0769.73032
[26] Taber, L.A., Biomechanical growth laws for muscle tissue, J. theor. biol., 193, 201-213, (1998)
[27] Huiskes, R.; Weinans, H.; van Rietbergen, B., The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials, Clin. orthop., 274, 124-134, (1992)
[28] Casey, J.; Naghdi, P.M., A remark on the use of the decomposition \(F = F_e F_p\) in plasticity, J. appl. mech., 47, 672-675, (1980) · Zbl 0472.73035
[29] Naghdi, P.M., A critical review of the state of finite plasticity, J. appl. math. phys. (ZAMP), 41, 315-394, (1990) · Zbl 0712.73032
[30] R.S. Rivlin, Reflections on certain aspects of thermomechanics, in: Meeting on Finite Thermoelasticity, Rome, 1986, pp. 11-43. Reprinted in: G.I. Barenblatt, D.D. Joseph (Eds.), Collected Papers of R.S. Rivlin, vol. I, Springer, Berlin, 1996, pp. 430-462.
[31] R.S. Rivlin, The thermomechanics of materials with fading memory, in: J.F. Hutton, J.R.A. Pearson, K. Walters (Eds.), Theoretical Rheology, Wiley, New York, 1975, pp. 83-103. Reprinted in: G.I. Barenblatt, D.D. Joseph (Eds.), Collected Papers of R.S. Rivlin, vol. II, Springer, Berlin, 1996, pp. 1559-1579.
[32] Casey, J., On elastic-thermo-plastic materials at finite deformations, Int. J. plast., 14, 173-191, (1998) · Zbl 0911.73027
[33] Kestin, J., A course in thermodynamics, vol. I, (1979), Taylor & Francis Washington
[34] Beaupré, G.S.; Orr, T.E.; Carter, D.R., An approach for time-dependent bone modeling and remodeling – theoretical development, J. orthop. res., 8, 651-661, (1990)
[35] Beaupré, G.S.; Orr, T.E.; Carter, D.R., An approach for time-dependent bone modeling and remodeling – application: a preliminary remodeling simulation, J. orthop. res., 8, 662-670, (1990)
[36] Whalen, R.T.; Carter, D.R.; Steele, C.R., Influence of physical activity on the regulation of bone density, J. biomech., 21, 825-837, (1988)
[37] Papadopoulos, P.; Taylor, R.L., On the application of multi-step integration methods to infinitesimal elastoplasticity, Int. J. numer. meth. engrg., 37, 3169-3184, (1994) · Zbl 0810.73078
[38] Papadopoulos, P.; Lu, J., A general framework for the numerical solution of problems in finite elasto-plasticity, Comput. meth. appl. mech. engrg., 159, 1-18, (1998) · Zbl 0954.74068
[39] Wilkins, M.L., Calculation of elastic – plastic flow, (), 211-263
[40] Simo, J.C.; Taylor, R.L., Consistent tangent operators for rate-independent elasto-plasticity, Comput. meth. appl. mech. engrg., 48, 101-118, (1985) · Zbl 0535.73025
[41] Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z., The finite element method: its basis and fundamentals, (2005), Butterworth-Heinemann Oxford · Zbl 1307.74005
[42] Zienkiewicz, O.C.; Taylor, R.L., The finite element method for solid and structural mechanics, (2005), Butterworth-Heinemann Oxford · Zbl 0991.74003
[43] R.L. Taylor, FEAP - A Finite Element Analysis Program, Version 8.2 User Manual. UC-Berkeley, 2008.
[44] Fung, Y.C.; Liu, S.Q., Change of residual strains due to hypertrophy caused by aortic constriction, Circ. res., 65, 1340-1349, (1989)
[45] Morgan, E.F.; Bayraktar, H.H.; Keaveny, T.M., Trabecular bone modulus – density relationships depend on anatomic site, J. biomech., 36, 897-904, (2003)
[46] Keyak, J.H.; Rossi, S.A.; Jones, K.A.; Skinner, H.B., Prediction of femoral fracture load using automated finite element modeling, J. biomech., 31, 125-133, (1998)
[47] Doyle, T.C.; Ericksen, J.L., Non-linear elasticity, Adv. appl. mech., 4, 53-115, (1956)
[48] B.R. Seth, Generalized strain measure with application to physical problems, in: M. Reiner, D. Abir (Eds.), Second-order Effects in Elasticity, Plasticity, and Fluid Dynamics, New York, 1964, pp. 162-172 (IUTAM Symposium, Haifa, Israel, Pergamon Press).
[49] Hill, R., On constitutive inequalities for simple materials, J. mech. phys. sol., 16, 229-242, (1968) · Zbl 0162.28702
[50] Marsden, J.E.; Hughes, T.J.R., Mathematical foundations of elasticity, (1994), Dover New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.