×

zbMATH — the first resource for mathematics

Existence and uniqueness of solutions to nonlinear evolution equations with locally monotone operators. (English) Zbl 1227.35184
Summary: We establish the existence and uniqueness of solutions for nonlinear evolution equations on a Banach space with locally monotone operators, which is a generalization of the classical result for monotone operators. In particular, we show that local monotonicity implies pseudo-monotonicity. The main results are applied to PDEs of various types such as porous medium equations, reaction-diffusion equations, the generalized Burgers equation, the Navier-Stokes equation, the 3D Leray-\(\alpha \) model and the \(p\)-Laplace equation with non-monotone perturbations.

MSC:
35K90 Abstract parabolic equations
35Q30 Navier-Stokes equations
47H05 Monotone operators and generalizations
35K57 Reaction-diffusion equations
35K92 Quasilinear parabolic equations with \(p\)-Laplacian
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Lions, J.L., Quelques Méthodes de Résolution des problèmes aux limites on linéaires, (1969), Dunod Paris · Zbl 0189.40603
[2] N.V. Krylov, B.L. Rozovskii, Stochastic evolution equations, Translated from Itogi Naukii Tekhniki, Seriya Sovremennye Problemy Matematiki, 14, 1979, 71-146.
[3] Zeidler, E., Nonlinear functional analysis and its applications II/B: nonlinear monotone operators, (1990), Springer-Verlag New York
[4] Minty, G.J., Monotone non-linear operators in Hilbert space, Duke. math. J., 29, 341-346, (1962) · Zbl 0111.31202
[5] Minty, G.J., On a monotonicity method for the solution of non-linear equations in Banach space, Proc. natl. acad. sci. USA, 50, 1038-1041, (1963) · Zbl 0124.07303
[6] Browder, F.E., Nonlinear elliptic boundary value problems, Bull. amer. math. soc., 69, 862-874, (1963) · Zbl 0127.31901
[7] Browder, F.E., Non-linear equations of evolution, Ann. math., 80, 485-523, (1964) · Zbl 0127.33602
[8] Leray, J.; Lions, J.L., Quelques résultats de višik sur LES problèmes elliptiques non linéaires par LES méthodes de minty – browder, Bull. soc. math. France, 93, 97-107, (1965) · Zbl 0132.10502
[9] Hartman, P.; Stampacchia, G., On some nonlinear elliptic differential equations, Acta. math., 115, 271-310, (1966) · Zbl 0142.38102
[10] Brézis, H., Opérateurs maximaux monotones, (1973), North-Holland Amsterdam · Zbl 0252.47055
[11] Showalter, R.E., Monotone operators in Banach space and nonlinear partial differential equations, () · Zbl 0870.35004
[12] Brézis, H., Équations et inéquations non linéaires dans LES espaces vectoriels en dualité, Ann. inst. Fourier, 18, 115-175, (1968) · Zbl 0169.18602
[13] Browder, F.E.; Hess, P., Nonlinear mappings of monotone type in Banach spaces, J. funct. anal., 11, 251-294, (1972) · Zbl 0249.47044
[14] E. Pardoux, Equations aux dérivées partielles stochastiques non linéaires monotones, Ph.D. thesis, Université Paris XI, 1975.
[15] Gyöngy, I., On stochastic equations with respect to semimartingale III, Stochastics, 7, 231-254, (1982) · Zbl 0495.60067
[16] Ren, J.; Röckner, M.; Wang, F.-Y., Stochastic generalized porous media and fast diffusion equations, J. differential equations, 238, 118-152, (2007) · Zbl 1129.60059
[17] Liu, Wei; Röckner, Michael, SPDE in Hilbert space with locally monotone coefficients, J. funct. anal., 259, 2902-2922, (2010) · Zbl 1236.60064
[18] Z. Brzezniak, W. Liu, J. Zhu, Strong solutions for SPDE with locally monotone coefficients driven by Lévy noise, arXiv:1108.0343. · Zbl 1310.60091
[19] Liu, W., Large deviations for stochastic evolution equations with small multiplicative noise, Appl. math. optim., 61, 27-56, (2010) · Zbl 1387.60052
[20] Ren, J.; Zhang, X., Fredlin – wentzell’s large deviation principle for stochastic evolution equations, J. funct. anal., 254, 3148-3172, (2008) · Zbl 1143.60023
[21] Gyöngy, I.; Millet, A., Rate of convergence of space time approximations for stochastic evolution equations, Pot. anal., 30, 29-64, (2009) · Zbl 1168.60025
[22] Liu, W., Harnack inequality and applications for stochastic evolution equations with monotone drifts, J. evol. equat., 9, 747-770, (2009) · Zbl 1239.60058
[23] Liu, W.; Wang, F.-Y., Harnack inequality and strong Feller property for stochastic fast diffusion equations, J. math. anal. appl., 342, 651-662, (2008) · Zbl 1151.60032
[24] Wang, F.-Y., Harnack inequality and applications for stochastic generalized porous media equations, Ann. probab., 35, 1333-1350, (2007) · Zbl 1129.60060
[25] Liu, W., Invariance of subspaces under the solution flow of SPDE, Infin. dimens. anal. quantum probab. relat. top., 13, 87-98, (2010) · Zbl 1210.60067
[26] Beyn, W.; Gess, B.; Lescot, P.; Röckner, M., The global random attractor for a class of stochastic porous media equations, Comm. partial differential equations, 36, 446-469, (2011) · Zbl 1284.60124
[27] Gess, B.; Liu, W.; Röckner, M., Random attractors for a class of stochastic partial differential equations driven by general additive noise, J. differential equations, 251, 1225-1253, (2011) · Zbl 1228.35062
[28] Prévôt, C.; Röckner, M., A concise course on stochastic partial differential equations, () · Zbl 1123.60001
[29] Browder, F.E., Pseudo-monotone operators and nonlinear elliptic boundary value problems on unbounded domains, Proc. natl. acad. sci. USA, 74, 2659-2661, (1977) · Zbl 0358.35034
[30] Krylov, N.V., On kolmogorov’s equations for finite dimensional diffusion, (), 1-63 · Zbl 0943.60070
[31] Hirano, N., Nonlinear evolution equations with nonmonotonic perturbations, Nonlinear anal., 13, 599-609, (1989) · Zbl 0682.34010
[32] Shioji, N., Existence of periodic solutions for nonlinear evolution equations with pseudo monotone operators, Proc. amer. math. soc., 125, 2921-2929, (1997) · Zbl 0883.47051
[33] Menaldi, J.-L.; Sritharan, S.S., Stochastic 2-D navier – stokes equation, Appl. math. optim., 46, 31-53, (2002) · Zbl 1016.35072
[34] Temam, R., Navier – stokes equations: theory and numerical analysis, (2001), American Mathematical Society Providence, Rhode Island, Originally published: Amsterdam, North-Holland, 1977 · Zbl 0981.35001
[35] Chueshov, I.; Millet, A., Stochastic 2D hydrodynamical type systems: well posedness and large deviations, Appl. math. optim., 61, 379-420, (2010) · Zbl 1196.49019
[36] Leray, J., Essai sur le mouvemenet d’un fluide visqueux emplissant l’espace, Acta. math., 63, 193-248, (1934)
[37] Cheskidov, A.; Holm, D.D.; Olson, E.; Titi, E.S., On Leray-\(\alpha\) model of turbulence, royal society London, Proc. series A, math. physical eng. sci., 461, 629-649, (2005) · Zbl 1145.76386
[38] Chepyzhov, V.V.; Titi, E.S.; Vishik, M.I., On the convergence of solutions of the Leray-\(\alpha\) model to the trajectory attractor of the 3D navier – stokes system, Discrete and continuous dynamical systems, 17, 481-500, (2007) · Zbl 1146.35071
[39] Röckner, M.; Zhang, X., Tamed 3D navier – stokes equation: existence, uniqueness and regularity, Infin. dimens. anal. quantum probab. relat. top., 12, 525-549, (2009) · Zbl 1180.35417
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.