×

zbMATH — the first resource for mathematics

Inflation in AdS/CFT. (English) Zbl 1226.83060
Summary: We study the AdS/CFT correspondence as a probe of inflation. We assume the existence of a string landscape containing at least one stable AdS vacuum and a (nearby) metastable de Sitter state. Standard arguments imply that the bulk physics in the vicinity of the AdS minimum is described by a boundary CFT. We argue that large enough bubbles of the dS phase, including those able to inflate, are described by mixed states in the CFT. Inflating degrees of freedom are traced over and do not appear explicitly in the boundary description. They nevertheless leave a distinct imprint on the mixed state. Analytic continuation allows us, in principle, to recover a large amount of nonperturbatively defined information about the inflating regime. Our work also shows that no scattering process can create an inflating region, even by quantum tunneling, since a pure state can never evolve into a mixed state under unitary evolution.

MSC:
83E30 String and superstring theories in gravitational theory
83F05 Relativistic cosmology
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[5] doi:10.1103/PhysRevD.68.046005 · Zbl 1244.83036
[17] doi:10.1103/PhysRevD.70.126009
[18] doi:10.1016/j.nuclphysb.2003.11.029 · Zbl 1097.81703
[19] doi:10.1016/j.nuclphysb.2004.06.019 · Zbl 1151.81367
[20] doi:10.1103/PhysRevD.69.126006
[21] doi:10.1103/PhysRevD.69.086008
[22] doi:10.1103/PhysRevD.69.086010
[23] doi:10.1002/prop.200310134 · Zbl 1049.81582
[25] doi:10.1016/S0550-3213(02)00752-6 · Zbl 0998.81076
[26] doi:10.1016/j.nuclphysb.2005.03.026 · Zbl 1207.81098
[40] doi:10.1016/S0370-2693(98)00377-3 · Zbl 1355.81126
[41] doi:10.1016/S0370-1573(99)00083-6 · Zbl 1368.81009
[42] doi:10.1103/PhysRevD.35.1747
[43] doi:10.1016/0370-2693(87)90429-1
[44] doi:10.1016/0550-3213(90)90357-J
[46] doi:10.1103/PhysRevD.62.044041
[47] doi:10.1103/PhysRevD.67.124022
[50] doi:10.1103/PhysRevD.59.104021
[52] doi:10.1103/PhysRevD.71.064024
[53] doi:10.1016/0375-9601(76)90178-X
[60] doi:10.1103/PhysRevD.44.1007
[61] doi:10.1103/PhysRevD.45.3469
[65] doi:10.1103/PhysRevD.15.2738
[68] doi:10.1103/PhysRevLett.83.3370 · Zbl 0946.81063
[69] doi:10.1103/PhysRevD.63.084017
[72] doi:10.1103/PhysRevLett.83.2707 · Zbl 0958.81151
[76] doi:10.1103/PhysRevD.60.104039
[77] doi:10.1016/S0370-2693(01)00335-5 · Zbl 0977.81130
[80] doi:10.1103/PhysRevD.71.066003
[81] doi:10.1103/PhysRevD.21.3305
[82] doi:10.1016/0550-3213(83)90307-3
[83] doi:10.1103/PhysRevD.41.2638
[84] doi:10.1103/PhysRevD.42.4042
[89] doi:10.1103/PhysRevD.59.066002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.