zbMATH — the first resource for mathematics

Moduli dependent \(\mu \)-terms in a heterotic standard model. (English) Zbl 1226.81169
Summary: In this paper, we present a formalism for computing the non-vanishing Higgs \(\mu \)-terms in a heterotic standard model. This is accomplished by calculating the cubic product of the cohomology groups associated with the vector bundle moduli (\(\phi\)), Higgs \((H)\) and Higgs conjugate (\(\overline{H}\)) superfields. This leads to terms proportional to \(\phi H\overline{H}\) in the low energy superpotential which, for non-zero moduli expectation values, generate moduli dependent \(\mu \)-terms of the form \(\langle \phi\rangle H\overline{H}\). It is found that these interactions are subject to two very restrictive selection rules, each arising from a Leray spectral sequence, which greatly reduce the number of moduli that can couple to Higgs-Higgs conjugate fields. We apply our formalism to a specific heterotic standard model vacuum. The non-vanishing cubic interactions \(\phi H\overline{H}\) are explicitly computed in this context and shown to contain only four of the nineteen vector bundle moduli.

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81V22 Unified quantum theories
PDF BibTeX Cite
Full Text: DOI arXiv
[2] doi:10.1016/j.physletb.2005.05.007 · Zbl 1247.81349
[6] doi:10.1016/0550-3213(86)90146-X
[7] doi:10.1103/PhysRevD.32.2102
[8] doi:10.1016/0370-2693(86)91130-5
[9] doi:10.1016/0370-2693(85)90734-8
[10] doi:10.1016/0550-3213(87)90579-7
[12] doi:10.1016/S0370-2693(98)00713-8
[13] doi:10.1142/S0217751X04018087 · Zbl 1080.81648
[17] doi:10.1016/j.nuclphysb.2004.06.032 · Zbl 1151.81369
[20] doi:10.1016/j.nuclphysb.2005.03.011 · Zbl 1207.83057
[30] doi:10.1007/s002200050154 · Zbl 0919.14010
[34] doi:10.1016/j.physletb.2004.08.010 · Zbl 1247.14044
[37] doi:10.1016/j.physletb.2005.05.004 · Zbl 1247.81365
[42] doi:10.1103/PhysRevD.71.115013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.