×

zbMATH — the first resource for mathematics

A simple two-phase method for the simulation of complex free surface flows. (English) Zbl 1225.76210
Summary: We propose a simple and efficient diffuse interface (interface-capturing) two-phase algorithm for the simulation of complex non-hydrostatic free surface flows in general geometries. The physical model is given by a special case of the more general Baer – Nunziato model for compressible multi-phase flows. In the applications considered here, the relative pressure of the gas phase with respect to atmospheric reference conditions is assumed to be zero everywhere and the momentum of the gas phase can be neglected compared to the one of the liquid. The reduced system is closed by the Tait equation of state, which is a widespread model for water. The resulting PDE system is solved by a high order path-conservative WENO finite volume scheme on unstructured triangular meshes, to be applicable also in complex geometries. To assure low numerical dissipation at the free surface, which actually is crucial for the applications under consideration here, we use the new generalized Osher-type scheme of the author and E. F. Toro [Sci. Comput. 48, No. 1-3, 70–88 (2011; Zbl 1220.65110)], which resolves steady shear and contact waves exactly, in contrast to the simpler centered path-conservative FORCE schemes presented in [M. Dumbser et al., Comput. Methods Appl. Mech. Eng. 199, 625–647 (2010)].
The model derives directly from first principles, namely the conservation of mass and momentum, hence it does not make any of the classical simplifications inherent in the commonly used shallow water models, which are based on depth-averaging, neglecting accelerations in gravity directions and on the resulting hydrostatic pressure distribution. We validate the new two-phase model against available analytical, numerical and experimental reference solutions and we also show some comparisons with the classical shallow water model for typical dambreak-type problems.

MSC:
76M12 Finite volume methods applied to problems in fluid mechanics
76B10 Jets and cavities, cavitation, free-streamline theory, water-entry problems, airfoil and hydrofoil theory, sloshing
PDF BibTeX Cite
Full Text: DOI
References:
[1] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, J. comput. phys., 144, 45-58, (1994) · Zbl 0822.65062
[2] Alcrudo, F.; Benkhaldoun, F., Exact solutions to the Riemann problem of the shallow water equations with a bottom step, Comput. fluids, 30, 643-671, (2001) · Zbl 1048.76008
[3] Andrianov, N.; Warnecke, G., The Riemann problem for the baer – nunziato two-phase flow model, J. comput. phys., 212, 434-464, (2004) · Zbl 1115.76414
[4] Audusse, E.; Bouchut, F.; Bristeau, M.O.; Klein, R.; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. sci. comput., 25, 2050-2065, (2004) · Zbl 1133.65308
[5] Baer, M.R.; Nunziato, J.W., A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials, J. multiphase flow, 12, 861-889, (1986) · Zbl 0609.76114
[6] Batchelor, G.K., An introduction to fluid mechanics, (1974), Cambridge University Press · Zbl 0152.44402
[7] Bell, J.B.; Colella, P.; Glaz, H.M., A second-order projection method for the incompressible navier – stokes equations, J. comput. phys., 85, 257-283, (1989) · Zbl 0681.76030
[8] Bermudez, A.; Vázquez-Cendón, M.E., Upwind methods for hyperbolic conservation laws with source terms, Comput. fluids, 23, 1049-1071, (1994) · Zbl 0816.76052
[9] Bernetti, R.; Titarev, V.A.; Toro, E.F., Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry, J. comput. phys., 227, 3212-3243, (2008) · Zbl 1132.76027
[10] Brufau, P.; Vazquez-Cendon, M.E.; Garcia-Navarro, P., A numerical model for the flooding and drying of irregular domains, Int. J. numer. methods fluids, 39, 247-275, (2002) · Zbl 1094.76538
[11] Canestrelli, A.; Dumbser, M.; Siviglia, A.; Toro, E.F., Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed, Adv. water resour., 33, 291-303, (2010)
[12] Canestrelli, A.; Siviglia, A.; Dumbser, M.; Toro, E.F., A well-balanced high order centered scheme for nonconservative systems: application to shallow water flows with fix and mobile bed, Adv. water resour., 32, 834-844, (2009)
[13] Castro, M.J.; Gallardo, J.M.; Parés, C., High-order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. applications to shallow-water systems, Math. comput., 75, 1103-1134, (2006) · Zbl 1096.65082
[14] Castro, M.J.; Pardo, A.; Parés, C.; Toro, E.F., On some fast well-balanced first order solvers for nonconservative systems, Math. comput., 79, 1427-1472, (2010) · Zbl 1369.65107
[15] Chorin, A.J., Numerical solution of the navier – stokes equations, Math. comput., 22, 745-762, (1968) · Zbl 0198.50103
[16] Chorin, A.J., On the convergence of discrete approximations to the navier – stokes equations, Math. comput., 23, 341-353, (1969) · Zbl 0184.20103
[17] Chorin, A.J., A numerical method for solving viscous flow problems, J. comput. phys., 2, 12-26, (1967) · Zbl 0149.44802
[18] A. Colagrossi, A meshless Lagrangian method for free-surface and interface flows with fragmentation, Ph.D. Thesis, Universita di Roma La Sapienza, 2005.
[19] Colagrossi, A.; Landrini, M., Numerical simulation of interfacial flows by smoothed particle hydrodynamics, J. comput. phys., 191, 448-475, (2003) · Zbl 1028.76039
[20] de Sousa, F.S.; Mangiavacchi, N.; Nonato, L.G.; Castelo, A.; Tome, M.F.; Ferreira, V.G.; Cuminato, J.A.; McKee, S., A front-tracking/front-capturing method for the simulation of 3D multi-fluid flows with free surfaces, J. comput. phys., 198, 469-499, (2004) · Zbl 1116.76412
[21] Deledicque, V.; Papalexandris, M.V., An exact Riemann solver for compressible two-phase flow models containing non-conservative products, J. comput. phys., 222, 217-245, (2007) · Zbl 1216.76044
[22] Dumbser, M., Arbitrary high order PNPM schemes on unstructured meshes for the compressible navier – stokes equations, Comput. fluids, 39, 60-76, (2010) · Zbl 1242.76161
[23] Dumbser, M.; Balsara, D.; Toro, E.F.; Munz, C.D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes, J. comput. phys., 227, 8209-8253, (2008) · Zbl 1147.65075
[24] Dumbser, M.; Castro, M.; Parés, C.; Toro, E.F., ADER schemes on unstructured meshes for non-conservative hyperbolic systems: applications to geophysical flows, Comput. fluids, 38, 1731-1748, (2009) · Zbl 1177.76222
[25] Dumbser, M.; Enaux, C.; Toro, E.F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. comput. phys., 227, 3971-4001, (2008) · Zbl 1142.65070
[26] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E.F., FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Comput. methods appl. mech. engrg., 199, 625-647, (2010) · Zbl 1227.76043
[27] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. comput. phys., 221, 693-723, (2007) · Zbl 1110.65077
[28] Dumbser, M.; Käser, M.; Titarev, V.A.; Toro, E.F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. comput. phys., 226, 204-243, (2007) · Zbl 1124.65074
[29] M. Dumbser, E.F. Toro, A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems, J. Sci. Comput., in press. doi10.1007/s10915-010-9400-3. · Zbl 1220.65110
[30] Fedkiw, R.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. comput. phys., 152, 457-492, (1999) · Zbl 0957.76052
[31] Fedkiw, R.P.; Aslam, T.; Xu, S., The ghost fluid method for deflagration and detonation discontinuities, J. comput. phys., 154, 393-427, (1999) · Zbl 0955.76071
[32] A. Ferrari, A new smooth particle hydrodynamics scheme for 3D free surface flows, VDI Verlag, Düsseldorf, 2009. ISBN: 978-3-18-349407-1.
[33] Ferrari, A., SPH simulation of free surface flow over a sharp-crested weir, Adv. water resour., 33, 270-276, (2010)
[34] Ferrari, A.; Dumbser, M.; Toro, E.F.; Armanini, A., A new stable version of the SPH method in Lagrangian coordinates, Commun. comput. phys., 4, 378-404, (2008) · Zbl 1364.76175
[35] Ferrari, A.; Dumbser, M.; Toro, E.F.; Armanini, A., A new 3D parallel SPH scheme for free surface flows, Comput. fluids, 38, 1203-1217, (2009) · Zbl 1242.76270
[36] A. Ferrari, L. Fraccarollo, M. Dumbser, E.F. Toro, A. Armanini. Three-dimensional flow evolution after a dambreak, J. Fluid Mech., in press. doi:10.1017/S0022112010003599. · Zbl 1205.76228
[37] Friedrich, O., Weighted essentially non-oscillatory schemes for the interpolation of Mean values on unstructured grids, J. comput. phys., 144, 194-212, (1998) · Zbl 1392.76048
[38] Garcia-Navarro, P.; Vázquez-Cendón, M.E., On numerical treatment of the source terms in the shallow water equations, Comput. fluids, 29, 951-979, (2000) · Zbl 0986.76051
[39] Gingold, R.A.; Monaghan, J.J., Smooth particle hydrodynamics: theory and application to non-spherical stars, Mon. not. roy. astron. soc., 181, 375-389, (1977) · Zbl 0421.76032
[40] Hirt, C.W.; Nichols, B.D., Volume of fluid (VOF) method for dynamics of free boundaries, J. comput. phys., 39, 201-225, (1981) · Zbl 0462.76020
[41] Hu, C.; Shu, C.W., Weighted essentially non-oscillatory schemes on triangular meshes, J. comput. phys., 150, 97-127, (1999) · Zbl 0926.65090
[42] Hu, X.Y.; Adams, N.A., An incompressible multi-phase SPH method, J. comput. phys., 227, 264-278, (2007) · Zbl 1126.76045
[43] Hu, X.Y.; Adams, N.A., A constant-density approach for incompressible multi-phase SPH, J. comput. phys., 228, 2082-2091, (2009) · Zbl 1280.76053
[44] Janosi, I.M.; Jan, D.; Szabo, K.G.; Tel, T., Turbulent drag reduction in dam-break flows, Exp. fluids, 37, 219-229, (2004)
[45] Klainermann, S.; Majda, A., Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluid, Commun. pure appl. math., 34, 481-524, (1981) · Zbl 0476.76068
[46] Klainermann, S.; Majda, A., Compressible and incompressible fluids, Commun. pure appl. math., 35, 629-651, (1982) · Zbl 0478.76091
[47] Kleefsman, K.M.T.; Fekken, G.; Veldman, A.E.P.; Iwanowski, B.; Buchner, B., A volume-of-fluid based simulation method for wave impact problems, J. comput. phys., 206, 363-393, (2005) · Zbl 1087.76539
[48] LeVeque, R.J., Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wavepropagation algorithm, J. comput. phys., 146, 346-365, (1998) · Zbl 0931.76059
[49] LeVeque, R.J., Balancing source terms and flux gradients in highresolution Godunov methods, J. comput. phys., 146, 346-365, (1998) · Zbl 0931.76059
[50] Löhner, R.; Yang, C.; Onate, E., On the simulation of flows with violent free surface motion, Comput. methods appl. mech. engrg., 195, 5597-5620, (2006) · Zbl 1122.76070
[51] Di Mascio, A.; Broglia, R.; Muscari, R., On the application of the single-phase level set method to naval hydrodynamic flows, Comput. fluids, 36, 868-886, (2007) · Zbl 1194.76201
[52] Milne-Thomson, L.M., Theoretical hydrodynamics, (1968), The Mac-Millan Press Ltd. · Zbl 0164.55802
[53] Monaghan, J.J., Simulating free surface flows with SPH, J. comput. phys., 110, 399-406, (1994) · Zbl 0794.76073
[54] Monaghan, J.J., SPH without a tensile instability, J. comput. phys., 159, 290-311, (2000) · Zbl 0980.76065
[55] Ben Moussa, B., On the convergence of SPH method for scalar conservation laws with boundary conditions, Methods appl. anal., 13, 29-62, (2006) · Zbl 1202.65121
[56] Mulder, W.; Osher, S.; Sethian, J.A., Computing interface motion in compressible gas dynamics, J. comput. phys., 100, 209-228, (1992) · Zbl 0758.76044
[57] Munz, C.D.; Dumbser, M.; Roller, S., Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature, J. comput. phys., 224, 352-364, (2007) · Zbl 1261.76049
[58] Munz, C.D.; Klein, R.; Roller, S.; Geratz, K.J., The extension of incompressible flow solvers to the weakly compressible regime, Comput. fluids, (2003) · Zbl 1042.76045
[59] Murrone, A.; Guillard, H., A five equation reduced model for compressible two phase flow problems, J. comput. phys., 202, 664-698, (2005) · Zbl 1061.76083
[60] Noelle, S.; Pankratz, N.; Puppo, G.; Natvig, J.R., Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows, J. comput. phys., 213, 474-499, (2006) · Zbl 1088.76037
[61] Noelle, S.; Xing, Y.L.; Shu, C.W., High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. comput. phys., 226, 29-58, (2007) · Zbl 1120.76046
[62] Oger, G.; Doring, M.; Alessandrini, B.; Ferrant, P., An improved SPH method: towards higher order convergence, J. comput. phys., 225, 1472-1492, (2007) · Zbl 1118.76050
[63] Osher, S.; Sethian, J.A., Fronts propagating with curvature-dependent speed: algorithms based on hamilton – jacobi formulations, J. comput. phys., 79, 12-49, (1988) · Zbl 0659.65132
[64] Parés, C., Numerical methods for nonconservative hyperbolic systems: a theoretical framework, SIAM J. numer. anal., 44, 300-321, (2006) · Zbl 1130.65089
[65] Pelanti, M.; Bouchut, F.; Mangeney, A., A roe-type scheme for two-phase shallow granular flows over variable topography, Math. model. numer. anal., 42, 851-885, (2008) · Zbl 1391.76801
[66] Pitman, E.B.; Le, L., A two-fluid model for avalanche and debris flows, Philos. trans. roy. soc. A, 363, 1573-1601, (2005) · Zbl 1152.86302
[67] Rhebergen, S.; Bokhove, O.; van der Vegt, J.J.W., Discontinuous Galerkin finite element methods for hyperbolic nonconservative partial differential equations, J. comput. phys., 227, 1887-1922, (2008) · Zbl 1153.65097
[68] Rieber, M.; Frohn, A., A numerical study on the mechanism of splashing, Int. J. heat fluid flow, 20, 455-461, (1999)
[69] Ritter, A., Die fortpflanzung der wasserwellen, Z. ver. deut. ing., 36, 947-954, (1892)
[70] Saurel, R.; Abgrall, R., A multiphase Godunov method for compressible multifluid and multiphase flows, J. comput. phys., 150, 425-467, (1999) · Zbl 0937.76053
[71] Schwendeman, D.W.; Wahle, C.W.; Kapila, A.K., The Riemann problem and a high-resolution Godunov method for a model of compressible two-phase flow, J. comput. phys., 212, 490-526, (2006) · Zbl 1161.76531
[72] Scimemi, E., Sulla forma delle vene tracimanti – the form of the flow over weirs, L’energia elettrica, milano, 7, 293-305, (1930)
[73] Shao, S., Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling, Int. J. numer. methods fluids, 50, 597-621, (2006) · Zbl 1320.76099
[74] Shao, S.; Lo, E., Incompressible SPH method for simulating newtonian and non-Newtonian flows with a free surface, Adv. water resour., 26, 787-800, (2003)
[75] Stansby, P.K.; Chegini, A.; Barnes, T.C.D., The initial stages of dam-break flow, J. fluid mech., 374, 407-424, (1998) · Zbl 0941.76515
[76] Patankar, S.V., Numerical heat transfer and fluid flow, (1980), Hemisphere Publishing Corporation Washington, DC · Zbl 0595.76001
[77] Taylor, G., Oblique impact of a jet on a plane surface, Philos. trans. roy. soc. lond. ser. A: math. phys. sci., 260, 1110, 96-100, (1996)
[78] Toro, E.F., Riemann solvers and numerical methods for fluid dynamics, (1999), Springer · Zbl 0923.76004
[79] Toro, E.F., Shock-capturing methods for free-surface shallow flows, (2001), John Wiley & Sons · Zbl 0996.76003
[80] Toro, E.F.; Hidalgo, A.; Dumbser, M., FORCE schemes on unstructured meshes I: conservative hyperbolic systems, J. comput. phys., 228, 3368-3389, (2009) · Zbl 1168.65377
[81] Toumi, I., A weak formulation of roe’s approximate Riemann solver, J. comput. phys., 102, 360-373, (1992) · Zbl 0783.65068
[82] Truckenbrodt, E., Fluidmechanik – band 1: grundlagen und elementare strömungsvorgänge dichtebeständiger fluide, (2008), Springer-Verlag Berlin, Heidelberg · Zbl 0424.76001
[83] van Kan, J., A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. sci. stat. comput., 7, 871-891, (1986) · Zbl 0594.76023
[84] Vázquez-Cendón, M.E., Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry, J. comput. phys., 148, 497-526, (1999) · Zbl 0931.76055
[85] Vila, J.P., On particle weighted methods and smooth particle hydrodynamics, Math. models methods appl. sci., 9, 161-209, (1999) · Zbl 0938.76090
[86] Violeau, D.; Issa, R., Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview, Int. J. numer. methods fluids, 53, 277-304, (2007) · Zbl 1227.76022
[87] Xing, Y.L.; Shu, C.W., High-order well-balanced finite difference WENO schemes for a class of hyperbolic systems with source terms, J. sci. comput., 27, 1-3, 477-494, (2006) · Zbl 1115.76059
[88] Zhang, Y.T.; Shu, C.W., Third order WENO scheme on three dimensional tetrahedral meshes, Commun. comput. phys., 5, 836-848, (2009) · Zbl 1364.65177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.