×

zbMATH — the first resource for mathematics

Very-large-scale motions in a turbulent boundary layer. (English) Zbl 1225.76162
Summary: Direct numerical simulation of a turbulent boundary layer was performed to investigate the spatially coherent structures associated with very-large-scale motions (VLSMs). The Reynolds number was varied in the range \(Re_{\theta} = 570-2560\). The main simulation was conducted by using a computational box greater than \(50\delta_{o}\) in the streamwise domain, where \(\delta_{o}\) is the boundary layer thickness at the inlet, and inflow data was obtained from a separate inflow simulation based on Lund’s method. Inspection of the three-dimensional instantaneous fields showed that groups of hairpin vortices are coherently arranged in the streamwise direction and that these groups create significantly elongated low- and high-momentum regions with large amounts of Reynolds shear stress. Adjacent packet-type structures combine to form the VLSMs; this formation process is attributed to continuous stretching of the hairpins coupled with lifting-up and backward curling of the vortices. The growth of the spanwise scale of the hairpin packets occurs continuously, so it increases rapidly to double that of the original width of the packets. We employed the modified feature extraction algorithm developed by B. Ganapathisubramani, E. K. Longmire and I. Marusic [J. Fluid Mech. 478, 35–46 (2003; Zbl 1032.76500)] to identify the properties of the VLSMs of hairpin vortices. In the log layer, patches with the length greater than \(3\delta -4\delta\) account for more than 40% of all the patches and these VLSMs contribute approximately 45% of the total Reynolds shear stress included in all the patches. The VLSMs have a statistical streamwise coherence of the order of \(\sim 6\delta\); the spatial organization and coherence decrease away from the wall, but the spanwise width increases monotonically with the wall-normal distance. Finally, the application of linear stochastic estimation demonstrated the presence of packet organization in the form of a train of packets in the log layer.

MSC:
76F40 Turbulent boundary layers
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1017/S0022112088000345 · Zbl 0641.76050 · doi:10.1017/S0022112088000345
[2] DOI: 10.1063/1.3247176 · Zbl 1183.76494 · doi:10.1063/1.3247176
[3] DOI: 10.1017/S0022112000001713 · Zbl 0958.76509 · doi:10.1017/S0022112000001713
[4] Smith, Proc. 8th Symp. on Turbulence pp 299– (1984)
[5] DOI: 10.1017/S0022112010002995 · Zbl 1205.76146 · doi:10.1017/S0022112010002995
[6] DOI: 10.1017/S0022112001003512 · Zbl 1008.76029 · doi:10.1017/S0022112001003512
[7] DOI: 10.1016/j.jcp.2009.02.031 · Zbl 1273.76009 · doi:10.1016/j.jcp.2009.02.031
[8] DOI: 10.1098/rsta.2006.1940 · Zbl 1152.76369 · doi:10.1098/rsta.2006.1940
[9] DOI: 10.1063/1.3139294 · Zbl 1183.76457 · doi:10.1063/1.3139294
[10] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503 · doi:10.1017/S0022112000001580
[11] DOI: 10.1146/annurev.fl.23.010191.003125 · doi:10.1146/annurev.fl.23.010191.003125
[12] DOI: 10.1007/s003489900087 · doi:10.1007/s003489900087
[13] DOI: 10.1063/1.868402 · Zbl 0825.76327 · doi:10.1063/1.868402
[14] Adrian, KSME Intl J. 15 pp 1741– (2001) · doi:10.1007/BF03185129
[15] DOI: 10.1017/S002211200700777X · Zbl 1141.76316 · doi:10.1017/S002211200700777X
[16] DOI: 10.1063/1.2717527 · Zbl 1146.76307 · doi:10.1063/1.2717527
[17] DOI: 10.1063/1.868594 · doi:10.1063/1.868594
[18] Adrian, Eddy Structure Identification pp 145– (1996) · doi:10.1007/978-3-7091-2676-9_3
[19] DOI: 10.1063/1.3453711 · Zbl 1190.76086 · doi:10.1063/1.3453711
[20] DOI: 10.1016/j.ijheatfluidflow.2010.01.005 · doi:10.1016/j.ijheatfluidflow.2010.01.005
[21] DOI: 10.1007/s10494-007-9116-0 · Zbl 1391.76178 · doi:10.1007/s10494-007-9116-0
[22] DOI: 10.1006/jcph.1998.5882 · Zbl 0936.76026 · doi:10.1006/jcph.1998.5882
[23] DOI: 10.1016/j.ijheatfluidflow.2010.11.001 · doi:10.1016/j.ijheatfluidflow.2010.11.001
[24] DOI: 10.1063/1.869617 · doi:10.1063/1.869617
[25] DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889
[26] DOI: 10.1002/fld.205 · Zbl 1059.76046 · doi:10.1002/fld.205
[27] DOI: 10.1063/1.858653 · doi:10.1063/1.858653
[28] DOI: 10.1007/s00162-004-0149-x · Zbl 1148.76320 · doi:10.1007/s00162-004-0149-x
[29] Jimenez, Center for Turbulence Research, Annual Research Briefs pp 137– (1998)
[30] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[31] DOI: 10.1017/S0022112005005872 · Zbl 1119.76304 · doi:10.1017/S0022112005005872
[32] Zhou, Self-Sustaining Mechanisms of Wall Turbulence pp 109– (1997)
[33] DOI: 10.1017/S0022112081001791 · doi:10.1017/S0022112081001791
[34] DOI: 10.1017/S002211209900467X · Zbl 0946.76030 · doi:10.1017/S002211209900467X
[35] DOI: 10.1017/S0022112006008871 · Zbl 1156.76316 · doi:10.1017/S0022112006008871
[36] DOI: 10.1017/S002211200600259X · Zbl 1104.76025 · doi:10.1017/S002211200600259X
[37] DOI: 10.1017/S0022112002003270 · Zbl 1032.76500 · doi:10.1017/S0022112002003270
[38] DOI: 10.1017/S0022112009006624 · Zbl 1181.76084 · doi:10.1017/S0022112009006624
[39] DOI: 10.1017/S0022112004002277 · Zbl 1060.76503 · doi:10.1017/S0022112004002277
[40] Wark, Proc. 2nd IUTAM Symp. on Structure of Turbulence and Drag Reduction pp 467– (1989)
[41] DOI: 10.1017/S0022112008003352 · Zbl 1155.76031 · doi:10.1017/S0022112008003352
[42] Townsend, The Structure of Turbulent Shear Flow (1976) · Zbl 0325.76063
[43] DOI: 10.1017/S002211200300733X · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[44] DOI: 10.1017/S0022112003005251 · Zbl 1063.76514 · doi:10.1017/S0022112003005251
[45] DOI: 10.1017/S0022112009991029 · Zbl 1183.76761 · doi:10.1017/S0022112009991029
[46] Theodorsen, Proc. 2nd Midwestern Conf. on Fluid Mech pp 1– (1952)
[47] DOI: 10.1098/rsta.1991.0070 · Zbl 0731.76033 · doi:10.1098/rsta.1991.0070
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.