×

zbMATH — the first resource for mathematics

Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence. (English) Zbl 1225.76147
Summary: The flow through a compressor passage without and with incoming free-stream grid turbulence is simulated. At moderate Reynolds number, laminar-to-turbulence transition can take place on both sides of the aerofoil, but proceeds in distinctly different manners. The direct numerical simulations (DNS) of this flow reveal the mechanics of breakdown to turbulence on both surfaces of the blade. The pressure surface boundary layer undergoes laminar separation in the absence of free-stream disturbances. When exposed to free-stream forcing, the boundary layer remains attached due to transition to turbulence upstream of the laminar separation point. Three types of breakdowns are observed; they combine characteristics of natural and bypass transition. In particular, instability waves, which trace back to discrete modes of the base flow, can be observed, but their development is not independent of the Klebanoff distortions that are caused by free-stream turbulent forcing. At a higher turbulence intensity, the transition mechanism shifts to a purely bypass scenario. Unlike the pressure side, the suction surface boundary layer separates independent of the free-stream condition, be it laminar or a moderate free-stream turbulence of intensity \(T_{u} \sim 3\%\). Upstream of the separation, the amplification of the Klebanoff distortions is suppressed in the favourable pressure gradient (FPG) region. This suppression is in agreement with simulations of constant pressure gradient boundary layers. FPG is normally stabilizing with respect to bypass transition to turbulence, but is, thereby, unfavourable with respect to separation. Downstream of the FPG section, a strong adverse pressure gradient (APG) on the suction surface of the blade causes the laminar boundary layer to separate. The separation surface is modulated in the instantaneous fields of the Klebanoff distortion inside the shear layer, which consists of forward and backward jet-like perturbations. Separation is followed by breakdown to turbulence and reattachment. As the free-stream turbulence intensity is increased, \(T_{u} \sim 6.5\%\), transitional turbulent patches are initiated, and interact with the downstream separated flow, causing local attachment. The calming effect, or delayed re-establishment of the boundary layer separation, is observed in the wake of the turbulent events.

MSC:
76F06 Transition to turbulence
76F65 Direct numerical and large eddy simulation of turbulence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1115/1.1737780 · doi:10.1115/1.1737780
[2] DOI: 10.1017/S0022112099007077 · Zbl 0972.76046 · doi:10.1017/S0022112099007077
[3] DOI: 10.1017/S0022112002006140 · doi:10.1017/S0022112002006140
[4] DOI: 10.1146/annurev.fluid.34.082701.161921 · doi:10.1146/annurev.fluid.34.082701.161921
[5] DOI: 10.1063/1.1493791 · Zbl 1185.76090 · doi:10.1063/1.1493791
[6] Saric, Annu. Rev. Fluid Mech. 26 pp 379– (1994) · doi:10.1146/annurev.fl.26.010194.002115
[7] DOI: 10.1017/S0022112096007513 · doi:10.1017/S0022112096007513
[8] DOI: 10.1063/1.858386 · doi:10.1063/1.858386
[9] DOI: 10.1016/0021-9991(91)90139-C · Zbl 0718.76079 · doi:10.1016/0021-9991(91)90139-C
[10] DOI: 10.1017/S0022112004000941 · Zbl 1131.76326 · doi:10.1017/S0022112004000941
[11] DOI: 10.1146/annurev.fl.01.010169.001333 · doi:10.1146/annurev.fl.01.010169.001333
[12] DOI: 10.1063/1.869908 · Zbl 1147.76308 · doi:10.1063/1.869908
[13] DOI: 10.1017/S0022112008003017 · Zbl 1151.76498 · doi:10.1017/S0022112008003017
[14] DOI: 10.1017/S0022112099008976 · Zbl 0959.76035 · doi:10.1017/S0022112099008976
[15] DOI: 10.1017/S0022112006001893 · Zbl 1145.76025 · doi:10.1017/S0022112006001893
[16] DOI: 10.1243/JMES_JOUR_1980_022_043_02 · doi:10.1243/JMES_JOUR_1980_022_043_02
[17] Morkovin, Viscous Drag Reduction pp 1– (1969) · doi:10.1007/978-1-4899-5579-1_1
[18] DOI: 10.1017/S0022112009006272 · Zbl 1181.76066 · doi:10.1017/S0022112009006272
[19] DOI: 10.1017/S0022112000002810 · Zbl 0963.76509 · doi:10.1017/S0022112000002810
[20] DOI: 10.1017/S0022112099007259 · Zbl 0959.76022 · doi:10.1017/S0022112099007259
[21] DOI: 10.1063/1.3040302 · Zbl 1182.76470 · doi:10.1063/1.3040302
[22] DOI: 10.1017/S0022112008001201 · Zbl 1151.76497 · doi:10.1017/S0022112008001201
[23] DOI: 10.1017/S0022112098003504 · Zbl 0951.76032 · doi:10.1017/S0022112098003504
[24] DOI: 10.1146/annurev.fl.23.010191.002431 · doi:10.1146/annurev.fl.23.010191.002431
[25] DOI: 10.1017/S0022112062000014 · Zbl 0131.41901 · doi:10.1017/S0022112062000014
[26] Kendall, FED pp 23– (1991)
[27] DOI: 10.1017/S0022112008000864 · Zbl 1144.76050 · doi:10.1017/S0022112008000864
[28] DOI: 10.1017/S0022112095000462 · Zbl 0847.76007 · doi:10.1017/S0022112095000462
[29] DOI: 10.1007/s10494-009-9216-0 · Zbl 1423.76006 · doi:10.1007/s10494-009-9216-0
[30] DOI: 10.1017/S0022112000002469 · Zbl 0983.76027 · doi:10.1017/S0022112000002469
[31] DOI: 10.1017/S0022112008005648 · Zbl 1171.76365 · doi:10.1017/S0022112008005648
[32] DOI: 10.1017/S0022112006001340 · Zbl 1177.76136 · doi:10.1017/S0022112006001340
[33] DOI: 10.1115/1.1351816 · doi:10.1115/1.1351816
[34] DOI: 10.1146/annurev.fluid.37.061903.175511 · Zbl 1117.76070 · doi:10.1146/annurev.fluid.37.061903.175511
[35] DOI: 10.1017/S0022112005003800 · Zbl 1070.76024 · doi:10.1017/S0022112005003800
[36] DOI: 10.1115/1.1791290 · doi:10.1115/1.1791290
[37] DOI: 10.1017/S0022112099006205 · Zbl 1002.76051 · doi:10.1017/S0022112099006205
[38] DOI: 10.1017/S0022112007008336 · Zbl 1125.76305 · doi:10.1017/S0022112007008336
[39] Wu, J. Fluid Mech. 446 pp 199– (2001)
[40] DOI: 10.1146/annurev.fl.20.010188.002415 · doi:10.1146/annurev.fl.20.010188.002415
[41] DOI: 10.1017/S0022112003004221 · Zbl 1137.76377 · doi:10.1017/S0022112003004221
[42] DOI: 10.1115/1.2929426 · doi:10.1115/1.2929426
[43] DOI: 10.1017/S0022112000002962 · Zbl 1008.76017 · doi:10.1017/S0022112000002962
[44] Görtler, Nachr. Wiss. Ges. Göttingen Math. Phys. Kl. 2 pp 1– (1940)
[45] DOI: 10.1016/j.ijheatfluidflow.2006.02.016 · doi:10.1016/j.ijheatfluidflow.2006.02.016
[46] DOI: 10.1017/S0022112008003078 · Zbl 1151.76496 · doi:10.1017/S0022112008003078
[47] DOI: 10.1017/S002211200600262X · Zbl 1106.76039 · doi:10.1017/S002211200600262X
[48] DOI: 10.1017/S0022112092000570 · Zbl 0782.76028 · doi:10.1017/S0022112092000570
[49] DOI: 10.1016/S0142-727X(03)00056-0 · doi:10.1016/S0142-727X(03)00056-0
[50] Fransson, Phys. Fluids 5 pp 1– (2005)
[51] DOI: 10.1017/S0022112094003083 · doi:10.1017/S0022112094003083
[52] DOI: 10.1115/1.1737781 · doi:10.1115/1.1737781
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.