×

zbMATH — the first resource for mathematics

Convectons, anticonvectons and multiconvectons in binary fluid convection. (English) Zbl 1225.76107
Summary: Binary fluid mixtures with a negative separation ratio heated from below exhibit steady spatially localized states called convectons for supercritical Rayleigh numbers. Numerical continuation is used to compute such states in the presence of both Neumann boundary conditions and no-slip no-flux boundary conditions in the horizontal. In addition to the previously identified convectons, new states referred to as anticonvectons with a void in the centre of the domain, and wall-attached convectons attached to one or other wall are identified. Bound states of convectons and anticonvectons called multiconvecton states are also computed. All these states are located in the so-called snaking or pinning region in the Rayleigh number and may be stable. The results are compared with existing results with periodic boundary conditions.

MSC:
76E06 Convection in hydrodynamic stability
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1103/PhysRevLett.94.184503 · doi:10.1103/PhysRevLett.94.184503
[2] Schneider, Phys. Rev. Lett. 104 pp 1– (2010)
[3] DOI: 10.1063/1.2837177 · Zbl 1182.76055 · doi:10.1063/1.2837177
[4] Bergeon, Phys. Rev. 78 pp 1– (2008)
[5] DOI: 10.1137/080713306 · Zbl 1200.37015 · doi:10.1137/080713306
[6] DOI: 10.1088/0169-5983/42/2/025505 · Zbl 1423.76125 · doi:10.1088/0169-5983/42/2/025505
[7] DOI: 10.1017/S0022112006000759 · Zbl 1122.76029 · doi:10.1017/S0022112006000759
[8] Mercader, Phys. Rev. 80 pp 1– (2009)
[9] DOI: 10.1063/1.1920349 · Zbl 1187.76039 · doi:10.1063/1.1920349
[10] DOI: 10.1002/fld.1196 · Zbl 1106.76051 · doi:10.1002/fld.1196
[11] DOI: 10.1103/PhysRevLett.95.244501 · doi:10.1103/PhysRevLett.95.244501
[12] Mercader, Eur. Phys. J. 15 pp 311– (2004)
[13] Barten, Phys. Rev. 51 pp 5662– (1995)
[14] Lo, Phys. Fluids 22 pp 1– (2010)
[15] Alonso, Phys. Rev. 75 pp 1– (2007) · doi:10.1103/PhysRevA.75.052108
[16] DOI: 10.1103/PhysRevLett.83.3190 · doi:10.1103/PhysRevLett.83.3190
[17] Alonso, Localized States in Physics: Solitons and Patterns pp 109– (2010)
[18] DOI: 10.1038/369215a0 · doi:10.1038/369215a0
[19] DOI: 10.1103/PhysRevLett.103.164501 · doi:10.1103/PhysRevLett.103.164501
[20] Kolodner, Physica 37 pp 319– (1989)
[21] DOI: 10.1103/PhysRevLett.65.1579 · doi:10.1103/PhysRevLett.65.1579
[22] Kolodner, Phys. Rev. 48 pp R665– (1993)
[23] DOI: 10.1209/0295-5075/80/14002 · doi:10.1209/0295-5075/80/14002
[24] DOI: 10.1023/A:1008398006403 · Zbl 0974.74024 · doi:10.1023/A:1008398006403
[25] Houghton, Phys. Rev. 80 pp 1– (2009)
[26] DOI: 10.1016/S0020-7683(01)00234-7 · Zbl 1006.74521 · doi:10.1016/S0020-7683(01)00234-7
[27] DOI: 10.1063/1.869354 · doi:10.1063/1.869354
[28] DOI: 10.1137/080724344 · Zbl 1167.76016 · doi:10.1137/080724344
[29] Crawford, Annu. Rev. Fluid Mech. 23 pp 341– (1991) · doi:10.1146/annurev.fl.23.010191.002013
[30] DOI: 10.1007/BFb0085426 · doi:10.1007/BFb0085426
[31] DOI: 10.1103/PhysRevLett.84.3069 · doi:10.1103/PhysRevLett.84.3069
[32] Champneys, Physica 112 pp 158– (1998)
[33] Woods, Physica 129 pp 147– (1999)
[34] DOI: 10.1063/1.2746816 · Zbl 1163.37317 · doi:10.1063/1.2746816
[35] Wadee, Physica 163 pp 26– (2002)
[36] DOI: 10.1016/j.physleta.2006.08.072 · Zbl 1236.35144 · doi:10.1016/j.physleta.2006.08.072
[37] Vladimirov, Phys. Rev. 65 pp 1– (2002)
[38] DOI: 10.1016/S0375-9601(02)00076-2 · Zbl 1098.76542 · doi:10.1016/S0375-9601(02)00076-2
[39] DOI: 10.1038/382793a0 · doi:10.1038/382793a0
[40] DOI: 10.1016/S0375-9601(99)00573-3 · Zbl 0947.76096 · doi:10.1016/S0375-9601(99)00573-3
[41] Steinberg, Physica 37 pp 359– (1989)
[42] Pomeau, Physica 23 pp 3– (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.