×

zbMATH — the first resource for mathematics

Interactions within the turbulent boundary layer at high Reynolds number. (English) Zbl 1225.76015
Summary: Simultaneous streamwise velocity measurements across the vertical direction obtained in the atmospheric surface layer \((Re_{\tau} \simeq 5\times 10^{5})\) under near thermally neutral conditions are used to outline and quantify interactions between the scales of turbulence, from the very-large-scale motions to the dissipative scales. Results from conditioned spectra, joint probability density functions and conditional averages show that the signature of very-large-scale oscillations can be found across the whole wall region and that these scales interact with the near-wall turbulence from the energy-containing eddies to the dissipative scales, most strongly in a layer close to the wall, \(z^{+} \lesssim 10^{3}\). The scale separation achievable in the atmospheric surface layer appears to be a key difference from the low-Reynolds-number picture, in which structures attached to the wall are known to extend through the full wall-normal extent of the boundary layer. A phenomenological picture of very-large-scale motions coexisting and interacting with structures from the hairpin paradigm is provided here for the high-Reynolds-number case. In particular, it is inferred that the hairpin-packet conceptual model may not be exhaustively representative of the whole wall region, but only of a near-wall layer of \(z^{+} = O(10^{3})\), where scale interactions are mostly confined.

MSC:
76-05 Experimental work for problems pertaining to fluid mechanics
76F40 Turbulent boundary layers
86A10 Meteorology and atmospheric physics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.1570830 · Zbl 1186.76136
[2] DOI: 10.1017/S0022112071001290
[3] DOI: 10.1017/S0022112000001580 · Zbl 0959.76503
[4] DOI: 10.1098/rsta.2006.1952 · Zbl 1152.76378
[5] DOI: 10.1063/1.2717527 · Zbl 1146.76307
[6] DOI: 10.1017/S0022112087000284
[7] DOI: 10.1017/S0022112009006946 · Zbl 1181.76008
[8] DOI: 10.1126/science.1188765 · Zbl 1226.76015
[9] DOI: 10.1007/s10494-007-9116-0 · Zbl 1391.76178
[10] DOI: 10.1103/PhysRevLett.99.114504
[11] DOI: 10.1007/s001620050093 · Zbl 0948.76029
[12] LeHew, Proc. 40th Fluid Dynamics Conference and Exhibit 28 June–1 July 2010 (2010)
[13] DOI: 10.1017/S0022112090000532
[14] Krogstad, Phys. Fluids 18 pp 055105– (1998)
[15] DOI: 10.1017/S0022112070000629
[16] DOI: 10.1063/1.869889 · Zbl 1147.76430
[17] DOI: 10.1017/S002211200600334X · Zbl 1120.76030
[18] DOI: 10.1017/S002211209900467X · Zbl 0946.76030
[19] DOI: 10.1098/rsta.2006.1942 · Zbl 1152.76421
[20] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004
[21] DOI: 10.1063/1.868838 · Zbl 1027.76589
[22] DOI: 10.1016/S0997-7546(00)00129-1 · Zbl 1005.76035
[23] DOI: 10.1017/S0022112009006624 · Zbl 1181.76084
[24] DOI: 10.1023/A:1020868132429
[25] DOI: 10.1017/S0022112004008985 · Zbl 1060.76508
[26] DOI: 10.1098/rsta.2006.1947 · Zbl 1152.76411
[27] DOI: 10.1063/1.1762432
[28] DOI: 10.1017/S0022112007005435 · Zbl 1113.76006
[29] DOI: 10.1017/S0022112001003512 · Zbl 1008.76029
[30] DOI: 10.1017/S002211200700777X · Zbl 1141.76316
[31] DOI: 10.1063/1.864901
[32] DOI: 10.1063/1.1344894 · Zbl 1184.76364
[33] DOI: 10.1098/rsta.2006.1940 · Zbl 1152.76369
[34] DOI: 10.1098/rsta.2006.1946 · Zbl 1152.76410
[35] DOI: 10.1017/S0022112001004189 · Zbl 0987.76034
[36] Gulitski, J. Fluid Mech. 589 pp 57– (2007)
[37] DOI: 10.1080/14685240902878045
[38] DOI: 10.1016/j.physd.2009.10.010 · Zbl 1193.37119
[39] DOI: 10.1017/S0022112003005251 · Zbl 1063.76514
[40] DOI: 10.1017/S0022112006008871 · Zbl 1156.76316
[41] Theodorsen, Proceedings of the 2nd Midwestern Conference on Fluid Mech. pp 1– (1952)
[42] DOI: 10.1063/1.2196089
[43] DOI: 10.1029/2003GL018611
[44] DOI: 10.1017/S0022112002003270 · Zbl 1032.76500
[45] DOI: 10.1017/S0022112082001311 · Zbl 0517.76057
[46] DOI: 10.1063/1.1843135 · Zbl 1187.76157
[47] DOI: 10.1017/S0022112008001985 · Zbl 1146.76027
[48] DOI: 10.1007/s10546-007-9219-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.