×

zbMATH — the first resource for mathematics

Nonlinear transient heat conduction analysis of functionally graded materials in the presence of heat sources using an improved meshless radial point interpolation method. (English) Zbl 1225.74033
Summary: An improved meshless radial point interpolation method, for the analysis of nonlinear transient heat conduction problems is proposed. This method is implemented for the heat conduction analysis of functionally graded materials (FGMs) with non-homogeneous and/or temperature dependent heat sources. The conventional meshless RPIM is an appropriate numerical technique for the analysis of engineering problems. One advantage of this method is that it is based on the global weak formulation, and also the associated shape functions possess the Kronecker delta function property. However, in the original form, the evaluation of the global domain integrals requires the use of a background mesh. The proposed method benefits from a meshless integration technique, which has the capability of evaluating domain integrals with a better accuracy and speed in comparison with the conventional integration methods, and therefore a truly meshless technique is attained. This integration technique is especially designed for the fast and accurate evaluation of several domain integrals, with different integrands, over a single domain. Some 2D and 3D examples are provided to assess the efficiency of the proposed method.

MSC:
74F05 Thermal effects in solid mechanics
74S25 Spectral and related methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX Cite
Full Text: DOI
References:
[1] Singh, A.; Singh, I.V.; Prakash, R., Meshless element free Galerkin method for unsteady nonlinear heat transfer problems, Int. J. heat mass transfer, 50, 1212-1219, (2007) · Zbl 1124.80366
[2] Demirkaya, G.; Wafo Soh, C.; Ilegbusi, O.J., Direct solution of navier – stokes equations by radial basis functions, Appl. math. model., 32, 1848-1858, (2008) · Zbl 1145.76346
[3] Marin, L., Treatment of singularities in the method of fundamental solutions for two-dimensional Helmholtz-type equations, Appl. math. model., 34, 1615-1633, (2010) · Zbl 1193.35223
[4] Shariyat, M.; Lavasani, S.M.H.; Khaghani, M., Nonlinear transient thermal stress and elastic wave propagation analyses of thick temperature-dependent FGM cylinders, using a second-order point-collocation method, Appl. math. model., 34, 898-918, (2010) · Zbl 1185.74011
[5] Singh, I.V.; Sandeep, K.; Prakash, R., The element free Galerkin method in three-dimensional steady state heat conduction, Int. J. comput. eng. sci., 3, 291-303, (2002)
[6] Singh, I.V.; Sandeep, K.; Prakash, R., Heat transfer analysis of two-dimensional fins using meshless element-free Galerkin method, Numer. heat transfer, part A, 44, 73-84, (2003)
[7] Singh, I.V.; Sandeep, K.; Prakash, R., Meshless EFG method in transient heat conduction problems, Int. J. heat technol., 21, 99-105, (2003)
[8] Singh, I.V.; Sandeep, K.; Prakash, R., Application of meshless element free Galerkin method in two-dimensional heat conduction problems, Comput. assist. mech. eng. sci., 11, 265-274, (2004) · Zbl 1101.80005
[9] Singh, I.V., A numerical solution of composite heat transfer problems using meshless method, Int. J. heat mass transfer, 47, 2123-2138, (2004) · Zbl 1050.80006
[10] Singh, I.V.; Tanaka, M., Heat transfer analysis of composite slabs using meshless element free Galerkin method, Comput. mech., 38, 521-532, (2006) · Zbl 1168.80309
[11] Singh, A.; Singh, I.V.; Prakash, R., Meshless analysis of unsteady-state heat transfer in semi-infinite solid with temperature-dependent thermal conductivity, Int. J. heat mass transfer, 33, 231-239, (2006)
[12] Divo, E.; Kassab, A.J., A meshless method for conjugateheat transferproblems, Eng. anal. bound. elem., 29, 136-149, (2005)
[13] Divo, E.; Kassab, A.J., Iterative domain decomposition meshless method modeling of incompressible viscous flows and conjugateheat transfer, Eng. anal. bound. elem., 30, 465-478, (2006) · Zbl 1195.76316
[14] Liu, L.H., Meshless method for radiation heat transfer in graded index medium, Int. J. heat mass transfer, 49, 219-229, (2006) · Zbl 1189.80050
[15] Liu, L.H.; Tan, J.Y.; Li, B.X., Meshlessapproach for coupled radiative and conductiveheat transferin one-dimensional graded index medium, J. quant. spectrosc. radiat. transfer, 101, 237-248, (2006)
[16] Liu, L.H.; Tan, J.Y., Least-squares collocation meshless approach for radiative heat transfer in absorbing and scattering media, J. quant. spectrosc. radiat. transfer, 103, 545-557, (2007)
[17] Liu, L.H.; Tan, J.Y., Meshless local petrov – galerkin approach for coupled radiative and conductive heat transfer, Int. J. therm. sci., 46, 672-681, (2007)
[18] Wang, H.; Qin, Q.-H.; Kang, Y.-L., A meshless model for transient heat conduction in functionally graded materials, Comput. mech., 38, 51-60, (2006) · Zbl 1097.80001
[19] Marin, L., Numerical solution of the Cauchy problem for steady-state heat transfer in two-dimensional functionally graded materials, Int. J. solids struct., 42, 4338-4351, (2005) · Zbl 1120.80308
[20] Marin, L.; Lesnic, D., The method of fundamental solutions for nonlinear functionally graded materials, Int. J. solids struct., 44, 6878-6890, (2007) · Zbl 1166.80300
[21] Marin, L., An alternating iterative MFS algorithm for the Cauchy problem in two-dimensional anisotropic heat conduction, CMC: comput. mater. continua, 12, 71-99, (2009)
[22] Yan, L.; Yang, F.-L.; Fu, C.-L., Ameshlessmethod for solving an inverse spacewise- dependentheatsource problem, J. comput. phys., 228, 123-136, (2009)
[23] Wu, X.-H.; Tao, W.-Q., Meshless method based on the local weak-forms for steady-state heat conduction problems, Int. J. heat mass transfer, 51, 3103-3112, (2008) · Zbl 1144.80356
[24] Zhang, X.-H.; Ouyang, J., Meshless analysis of heat transfer due to viscous dissipation in polymer flow, Eng. anal. bound. elem., 32, 41-51, (2008) · Zbl 1244.76099
[25] Zhang, X.-H.; Ouyang, J.; Zhang, L., Matrix free meshless method for transient heat conduction problems, Int. J. heat mass transfer, 52, 2161-2165, (2009) · Zbl 1157.80382
[26] Khosravifard, A.; Hematiyan, M.R., A new method for meshless integration in 2D and 3D Galerkin meshfree methods, Eng. anal. bound. elem., 34, 30-40, (2010) · Zbl 1244.74222
[27] Mohammadi, M.; Hematiyan, M.R.; Marin, L., Boundary element analysis of nonlinear transient heat conduction problems involving non-homogenous and nonlinear heat sources using time-dependent fundamental solutions, Eng. anal. bound. elem., 34, 655-665, (2010) · Zbl 1267.80015
[28] Wang, J.G.; Liu, G.R., A point interpolation meshless method based on radial basis functions, Int. J. numer. methods eng., 54, 1623-1648, (2002) · Zbl 1098.74741
[29] Liu, G.R.; Yan, L.; Wang, J.G.; Gu, Y.T., Point interpolation method based on local residual formulation using radial basis functions, Struct. eng. mech., 14, 713-732, (2002)
[30] Liu, G.R.; Gu, Y.T., Boundary meshfree methods based on the boundary point interpolation methods, Eng. anal. bound. elem., 28, 475-487, (2004) · Zbl 1130.74466
[31] Li, X.; Zhu, J.; Zhang, S., A meshless method based on boundary integral equations and radial basis functions for biharmonic-type problems, Appl. math. model., 35, 737-751, (2011) · Zbl 1205.65320
[32] Liu, G.R.; Gu, Y.T., An introduction to meshfree methods and their programming, (2005), Springer Netherlands, pp. 74-81
[33] Golberg, M.A.; Chen, C.S.; Bowman, H., Some recent results and proposals for the use of radial basis functions in the BEM, Eng. anal. bound. elem., 23, 285-296, (1999) · Zbl 0948.65132
[34] Reddy, J.N., An introduction to the finite element method, (1993), McGraw-Hill Singapore, pp. 227-230
[35] Hematiyan, M.R., A general method for evaluation of 2D and 3D domain integrals without domain discretization and its application in BEM, Comput. mech., 39, 509-520, (2007) · Zbl 1160.74049
[36] Hematiyan, M.R., Exact transformation of a wide variety of domain integrals into boundary integrals in boundary element method, Commun. numer. methods eng., 24, 1497-1521, (2008) · Zbl 1156.65099
[37] Touloukian, Y.S., Thermophysical properties of matter, (1973), IFI/Plenum New York, pp. 1272
[38] Liu, G.R.; Han, X., Computational inverse techniques in nondestructive evaluation, (2003), CRC, pp. 269-271 · Zbl 1067.74002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.