×

zbMATH — the first resource for mathematics

Finite element analysis on implicitly defined domains: an accurate representation based on arbitrary parametric surfaces. (English) Zbl 1225.65111
Summary: In this paper, we present some novel results and ideas for robust and accurate implicit representation of geometric surfaces in finite element analysis. The novel contributions of this paper are threefold: (1) describe and validate a method to represent arbitrary parametric surfaces implicitly; (2) represent arbitrary solids implicitly, including sharp features using level sets and boolean operations; (3) impose arbitrary Dirichlet and Neumann boundary conditions on the resulting implicitly defined boundaries. The methods proposed do not require local refinement of the finite element mesh in regions of high curvature, ensure the independence of the domain’s volume on the mesh, do not rely on boundary regularization, and are well suited to methods based on fixed grids such as the extended finite element method (XFEM). Numerical examples are presented to demonstrate the robustness and effectiveness of the proposed approach and show that it is possible to achieve optimal convergence rates using a fully implicit representation of object boundaries. This approach is one step in the desired direction of tying numerical simulations to computer aided design (CAD), similarly to the isogeometric analysis paradigm.

MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65D17 Computer-aided design (modeling of curves and surfaces)
Software:
Gmsh; XFEM
PDF BibTeX Cite
Full Text: DOI
References:
[1] S.P.A. Bordas, T. Rabczuk, J.-J. Rodenas, P. Kerfriden, M. Moumnassi, S. Belouettar, Recent advances towards reducing the meshing and re-meshing burden in computational sciences, Comput. Tech. Rev. 2 (2010) 51-82. doi:10.4203/ctr.2.3.
[2] Babuška, I.; Melenk, J.M., The partition of unity method, Int. J. numer. methods engrg., 40, 4, 727-758, (1997) · Zbl 0949.65117
[3] Strouboulis, T.; Copps, K.; Babuška, I., The generalized finite element method, Comput. methods appl. mech. engrg., 190, 32-33, 4081-4193, (2001) · Zbl 0997.74069
[4] Mittal, R.; Iaccarino, G., Immersed boundary methods, Ann. rev. fluid mech., 37, 1, 239-261, (2005) · Zbl 1117.76049
[5] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. methods appl. mech. engrg., 111, 3-4, 283-303, (1994) · Zbl 0845.73078
[6] Johansen, H.; Colella, P., A Cartesian grid embedded boundary method for poisson’s equation on irregular domains, J. comput. phys., 147, 1, 60-85, (1998) · Zbl 0923.65079
[7] Saiki, E.M.; Biringen, S., Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, J. comput. phys., 123, 2, 450-465, (1996) · Zbl 0848.76052
[8] Ye, T.; Mittal, R.; Udaykumar, H.S.; Shyy, W., An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. comput. phys., 156, 2, 209-240, (1999) · Zbl 0957.76043
[9] Belytschko, T.; Parimi, C.; Moës, N.; Sukumar, N.; Usui, S., Structured extended finite element methods for solids defined by implicit surfaces, Int. J. numer. methods engrg., 56, 4, 609-635, (2003) · Zbl 1038.74041
[10] Belytschko, T.; Xiao, S.P.; Parimi, C., Topology optimization with implicit functions and regularization, Int. J. numer. methods engrg., 57, 8, 1177-1196, (2003) · Zbl 1062.74583
[11] Sukumar, N.; Prévost, J.H., Modeling quasi-static crack growth with the extended finite element method. part i: computer implementation, Int. J. solids struct., 40, 26, 7513-7537, (2003) · Zbl 1063.74102
[12] Bordas, S.; Nguyen, P.V.; Dunant, C.; Guidoum, A.; Nguyen-Dang, H., An extended finite element library, Int. J. numer. methods engrg., 71, 6, 703-732, (2007) · Zbl 1194.74367
[13] Osher, S.; Sethian, J.A., Fronts propagating with curvature-dependent speed: algorithms based on hamilton – jacobi formulations, J. comput. phys., 79, 1, 12-49, (1988) · Zbl 0659.65132
[14] Rvachev, V.L.; Sheiko, T.I.; Shapiro, V.; Tsukanov, I., Transfinite interpolation over implicitly defined sets, Comput. aided geom. des., 18, 3, 195-220, (2001) · Zbl 0971.68174
[15] Moës, N.; Cloirec, M.; Cartraud, P.; Remacle, J.F., A computational approach to handle complex microstructure geometries, Comput. methods appl. mech. engrg., 192, 28-30, 3163-3177, (2003) · Zbl 1054.74056
[16] Rappoport, A.; Spitz, S., Interactive Boolean operations for conceptual design of 3-d solids, (), 269-278
[17] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. methods appl. mech. engrg., 197, 45-48, 3768-3782, (2008) · Zbl 1194.74517
[18] Laguardia, J.J.; Cueto, E.; Doblaré, M., A natural neighbour Galerkin method with quadtree structure, Int. J. numer. methods engrg., 63, 6, 789-812, (2005) · Zbl 1084.74056
[19] Terada, K.; Kurumatani, M., An integrated procedure for three-dimensional structural analysis with the finite cover method, Int. J. numer. methods engrg., 63, 15, 2102-2123, (2005) · Zbl 1134.74415
[20] Kobbelt, L.P.; Botsch, M.; Schwanecke, U.; Seidel, H.-P., Feature sensitive surface extraction from volume data, (), 57-66
[21] Frisken, S.F.; Perry, R.N.; Rockwood, A.P.; Jones, T.R., Adaptively sampled distance fields: a general representation of shape for computer graphics, (), 249-254
[22] Liehr, F.; Preusser, T.; Rumpf, M.; Sauter, S.; Schwen, L.O., Composite finite elements for 3d image based computing, Comput. vis. sci., 12, 4, 171-188, (2009)
[23] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int. J. numer. methods engrg., 46, 1, 131-150, (1999) · Zbl 0955.74066
[24] Natarajan, S.; Bordas, S.; Mahapatra, D.R., Numerical integration over arbitrary polygonal domains based on schwarz – christoffel conformal mapping, Int. J. numer. methods engrg., 80, 1, 103-134, (2009) · Zbl 1176.74190
[25] Natarajan, S.; Mahapatra, D.R.; Bordas, S.P.A., Integrating strong and weak discontinuities without integration subcells and example applications in an XFEM/gfem framework, Int. J. numer. methods engrg., 83, 3, 269-294, (2010) · Zbl 1193.74153
[26] S.P.A. Bordas, T. Rabczuk, N.-X. Hung, V.P. Nguyen, S. Natarajan, T. Bog, D.M. Quan, N.V. Hiep, Strain smoothing in fem and xfem, Comput. Struct., in press, doi:10.1016/j.compstruc.2008.07.006.
[27] Moës, N.; Béchet, E.; Tourbier, M., Imposing Dirichlet boundary conditions in the extended finite element method, Int. J. numer. methods engrg., 67, 12, 1641-1669, (2006) · Zbl 1113.74072
[28] Géniaut, S.; Massin, P.; Moës, N., A stable 3d contact formulation using X-FEM, Eur. J. comput. mech., 16, 259-275, (2007) · Zbl 1208.74096
[29] Béchet, É.; Moës, N.; Wohlmuth, B., A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method, Int. J. numer. methods engrg., 78, 8, 931-954, (2009) · Zbl 1183.74259
[30] Mourad, H.M.; Dolbow, J.; Harari, I., A bubble-stabilized finite element method for Dirichlet constraints on embedded interfaces, Int. J. numer. methods engrg., 69, 4, 772-793, (2007) · Zbl 1194.65136
[31] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on nitsche’s method, for elliptic interface problems, Comput. methods appl. mech. engrg., 191, 47-48, 5537-5552, (2002) · Zbl 1035.65125
[32] Dolbow, J.; Harari, I., An efficient finite element method for embedded interface problems, Int. J. numer. methods engrg., 78, 2, 229-252, (2009) · Zbl 1183.76803
[33] Dolbow, J.; Franca, L., Residual-free bubbles for embedded Dirichlet problems, Comput. methods appl. mech. engrg., 197, 45-48, 3751-3759, (2008) · Zbl 1197.65180
[34] Fernández-Méndez, S.; Huerta, A., Imposing essential boundary conditions in mesh-free methods, Comput. methods appl. mech. engrg., 193, 12-14, 1257-1275, (2004) · Zbl 1060.74665
[35] Lew, A.J.; Buscaglia, G.C., A discontinuous-Galerkin-based immersed boundary method, Int. J. numer. methods engrg., 76, 4, 427-454, (2008) · Zbl 1195.76258
[36] Kumar, A.V.; Padmanabhan, S.; Burla, R., Implicit boundary method for finite element analysis using non-conforming mesh or grid, Int. J. numer. methods engrg., 74, 9, 1421-1447, (2008) · Zbl 1158.74514
[37] Sukumar, N.; Chopp, D.L.; Moës, N.; Belytschko, T., Modeling holes and inclusions by level sets in the extended finite-element method, Comput. methods appl. mech. engrg., 190, 46-47, 6183-6200, (2001) · Zbl 1029.74049
[38] Burla, R.K.; Kumar, A.V., Implicit boundary method for analysis using uniform b-spline basis and structured grid, Int. J. numer. methods engrg., 76, 13, 1993-2028, (2008) · Zbl 1195.74219
[39] Bastian, P.; Engwer, C., An unfitted finite element method using discontinuous Galerkin, Int. J. numer. methods engrg., 79, 12, 1557-1576, (2009) · Zbl 1176.65131
[40] Dréau, K.; Chevaugeon, N.; Moës, N., Studied X-FEM enrichment to handle material interfaces with higher order finite element, Comput. methods appl. mech. engrg., 199, 29-32, 1922-1936, (2010) · Zbl 1231.74406
[41] Legay, A.; Wang, H.W.; Belytschko, T., Strong and weak arbitrary discontinuities in spectral finite elements, Int. J. numer. methods engrg., 64, 8, 991-1008, (2005) · Zbl 1167.74045
[42] Cheng, K.W.; Fries, T.-P., Higher-order XFEM for curved strong and weak discontinuities, Int. J. numer. methods engrg., 82, 5, 564-590, (2010) · Zbl 1188.74052
[43] Pereira, J.P.; Duarte, C.A.; Guoy, D.; Jiao, X., Hp-generalized FEM and crack surface representation for non-planar 3-d cracks, Int. J. numer. methods engrg., 77, 5, 601-633, (2009) · Zbl 1156.74383
[44] Mayer, U.M.; Gerstenberger, A.; Wall, W.A., Interface handling for three-dimensional higher-order XFEM-computations in fluid – structure interaction, Int. J. numer. methods engrg., 79, 7, 846-869, (2009) · Zbl 1171.74447
[45] Geuzaine, C.; Remacle, J.-F., Gmsh: a 3-d finite element mesh generator with built-in pre- and post-processing facilities, Int. J. numer. methods engrg., 79, 11, 1309-1331, (2009) · Zbl 1176.74181
[46] Moës, N.; Gravouil, A.; Belytschko, T., Non-planar 3d crack growth by the extended finite element and level sets. part i: mechanical model, Int. J. numer. methods engrg., 53, 11, 2549-2568, (2002) · Zbl 1169.74621
[47] Hartmann, E., On the curvature of curves and surfaces defined by normalforms, Comput. aided geom. des., 16, 5, 355-376, (1999) · Zbl 0916.68159
[48] Ma, Y.L.; Hewitt, W.T., Point inversion and projection for nurbs curve and surface: control polygon approach, Comput. aided geom. des., 20, 2, 79-99, (2003) · Zbl 1069.65558
[49] Remacle, J.-F.; Shephard, M.S., An algorithm oriented mesh database, Int. J. numer. methods engrg., 58, 2, 349-374, (2003) · Zbl 1035.68045
[50] Dunant, C.; Scrivener, K., Micro-mechanical modelling of alkali-silica-reaction-induced degradation using the AMIE framework, Cement concrete res., 40, 4, 517-525, (2010)
[51] Dunant, C.; Vinh, P.; Belgasmia, M.; Bordas, S.; Guidoum, A., Architecture tradeoffs of integrating a mesh generator to partition of unity enriched object-oriented finite element software, Revue eur. Méc. numér., 16, 237-258, (2007) · Zbl 1208.74146
[52] C. Dunant, Experimental and Modelling Study of the Alkali-Silica-Reaction in Concrete, Ph.D. Thesis, École Polytechnique Fédérale de Lausanne, 2009.
[53] Barth, T.J.; Sethian, J.A., Numerical schemes for the hamilton – jacobi and level set equations on triangulated domains, J. comput. phys., 145, 1, 1-40, (1998) · Zbl 0911.65091
[54] Hughes, T.; Cottrell, J.; Bazilevs, Y., Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement, Comput. methods appl. mech. engrg., 194, 39-41, 4135-4195, (2005) · Zbl 1151.74419
[55] Sukumar, N.; Moës, N.; Moran, B.; Belytschko, T., Extended finite element method for three-dimensional crack modelling, Int. J. numer. methods engrg., 48, 11, 1549-1570, (2000) · Zbl 0963.74067
[56] Ventura, G., On the elimination of quadrature subcells for discontinuous functions in the extended finite-element method, Int. J. numer. methods engrg., 66, 5, 761-795, (2006) · Zbl 1110.74858
[57] Liu, G.; Dai, K.; Nguyen, T., A smoothed finite element method for mechanics problems, Comput. mech., 39, 859-877, (2007) · Zbl 1169.74047
[58] Liu, G.R.; Nguyen, T.T.; Dai, K.Y.; Lam, K.Y., Theoretical aspects of the smoothed finite element method (sfem), Int. J. numer. methods engrg., 71, 8, 902-930, (2007) · Zbl 1194.74432
[59] Nguyen-Xuan, H.; Bordas, S.; Nguyen-Dang, H., Smooth finite element methods: convergence, accuracy and properties, Inter. J. numer. methods engrg., 74, 2, 175-208, (2008) · Zbl 1159.74435
[60] Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S.; Debongnie, J., A smoothed finite element method for plate analysis, Comput. methods appl. mech. engrg., 197, 13-16, 1184-1203, (2008) · Zbl 1159.74434
[61] Nguyen-Thanh, N.; Rabczuk, T.; Nguyen-Xuan, H.; Bordas, S.P.A., A smoothed finite element method for shell analysis, Comput. methods appl. mech. engrg., 198, 2, 165-177, (2008) · Zbl 1194.74453
[62] Rabczuk, T.; Zi, G.; Bordas, S.; Nguyen-Xuan, H., A simple and robust three-dimensional cracking-particle method without enrichment, Comput. methods appl. mech. engrg., 199, 37-40, 2437-2455, (2010) · Zbl 1231.74493
[63] Xuan, Z.C.; Lassila, T.; Rozza, G.; Quarteroni, A., On computing upper and lower bounds on the outputs of linear elasticity problems approximated by the smoothed finite element method, Int. J. numer. methods engrg., 83, 2, 174-195, (2010) · Zbl 1193.74160
[64] Szabó, B.; Babuska, I., Finite element analysis, (1991), Wiley
[65] Babuška, I., The finite element method with Lagrangian multipliers, Numer. math., 20, 3, 179-192, (1973) · Zbl 0258.65108
[66] Rvachev, V.L.; Sheiko, T.I., R-functions in boundary value problems in mechanics, Appl. mech. rev., 48, 4, 151-188, (1995)
[67] Chapelle, D.; Bathe, K., The inf – sup test, Comput. struct., 47, 4-5, 537-545, (1993) · Zbl 0780.73074
[68] Ji, H.; Dolbow, J.E., On strategies for enforcing interfacial constraints and evaluating jump conditions with the extended finite element method, Int. J. numer. methods engrg., 61, 14, 2508-2535, (2004) · Zbl 1075.74651
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.