×

zbMATH — the first resource for mathematics

Spatiotemporal dynamics of a Leslie-Gower predator-prey model incorporating a prey refuge. (English) Zbl 1225.49038
Summary: We investigate the spatiotemporal dynamics of a two-dimensional predator-prey model, which is based on a modified version of the Leslie-Gower scheme incorporating a prey refuge. We establish a Lyapunov function to prove the global stability of the equilibria with diffusion and determine the Turing space in the spatial domain. Furthermore, we perform a series of numerical simulations and find that the model dynamics exhibits complex Turing pattern replication: stripes, cold/hot spots-stripes coexistence and cold/hot spots patterns. The results indicate that the effect of the prey refuge for pattern formation is tremendous. This may enrich the dynamics of the effect of refuge on predator-prey systems.

MSC:
49N75 Pursuit and evasion games
93C20 Control/observation systems governed by partial differential equations
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kuang, Y.; Beretta, E., Global qualitative analysis of a ratio-dependent predator – prey system, Journal of mathematical biology, 36, 4, 389-406, (1998) · Zbl 0895.92032
[2] Xiao, D.; Ruan, S., Global dynamics of a ratio-dependent predator – prey system, Journal of mathematical biology, 43, 3, 268-290, (2001) · Zbl 1007.34031
[3] Hsu, S.; Hwang, T.; Kuang, Y., Global analysis of the michaelis – menten-type ratio-dependent predator – prey system, Journal of mathematical biology, 42, 6, 489-506, (2001) · Zbl 0984.92035
[4] Leslie, P., Some further notes on the use of matrices in population mathematics, Biometrika, 35, 3-4, 213-245, (1948) · Zbl 0034.23303
[5] Leslie, P., A stochastic model for studying the properties of certain biological systems by numerical methods, Biometrika, 45, 1-2, 16-31, (1958) · Zbl 0089.15803
[6] Upadhyay, R.; Rai, V., Why chaos is rarely observed in natural populations, Chaos, solitons & fractals, 8, 12, 1933-1939, (1997)
[7] Aziz-Alaoui, M., Study of a leslie – gower-type tritrophic population model, Chaos, solitons & fractals, 14, 8, 1275-1293, (2002) · Zbl 1031.92027
[8] Aziz-Alaoui, M.; Okiye, M., Boundedness and global stability for a predator – prey model with modified leslie – gower and Holling-type II schemes, Applied mathematics letters, 16, 7, 1069-1075, (2003) · Zbl 1063.34044
[9] Korobeinikov, A., A Lyapunov function for leslie – gower predator – prey models, Applied mathematics letters, 14, 6, 697-699, (2001) · Zbl 0999.92036
[10] Letellier, C.; Aziz-Alaoui, M., Analysis of the dynamics of a realistic ecological model, Chaos, solitons & fractals, 13, 1, 95-107, (2002) · Zbl 0977.92029
[11] Letellier, C.; Aguirre, L.; Maquet, J.; Aziz-Alaoui, M., Should all the species of a food chain be counted to investigate the global dynamics?, Chaos, solitons & fractals, 13, 5, 1099-1113, (2002) · Zbl 1004.92039
[12] Nindjin, A.; Aziz-Alaoui, M.; Cadivel, M., Analysis of a predator – prey model with modified leslie – gower and Holling-type II schemes with time delay, Nonlinear analysis. real world applications, 7, 5, 1104-1118, (2006) · Zbl 1104.92065
[13] Gakkhar, S.; Singh, B., Dynamics of modified leslie – gower-type prey – predator model with seasonally varying parameters, Chaos, solitons & fractals, 27, 5, 1239-1255, (2006) · Zbl 1094.92059
[14] Chen, F.; Shi, J., On a delayed nonautonomous ratio-dependent predator – prey model with Holling type functional response and diffusion, Applied mathematics and computation, 192, 2, 358-369, (2007) · Zbl 1193.34140
[15] Chen, F.; You, M., Permanence, extinction and periodic solution of the predator – prey system with beddington – deangelis functional response and stage structure for prey, Nonlinear analysis. real world applications, 9, 2, 207-221, (2008) · Zbl 1142.34051
[16] Chen, F.; Chen, L.; Xie, X., On a leslie – gower predator – prey model incorporating a prey refuge, Nonlinear analysis. real world applications, 10, 5, 2905-2908, (2009) · Zbl 1167.92032
[17] Chen, L.; Chen, F., Global stability of a leslie – gower predator – prey model with feedback controls, Applied mathematics letters, 22, 9, 1330-1334, (2009) · Zbl 1173.34333
[18] Nindjin, A.; Aziz-Alaoui, M., Persistence and global stability in a delayed leslie – gower type three species food chain, Journal of mathematical analysis and applications, 340, 1, 340-357, (2008) · Zbl 1127.92046
[19] Song, Y.; Yuan, S.; Zhang, J., Bifurcation analysis in the delayed leslie – gower predator – prey system, Applied mathematical modelling, 33, 11, 4049-4061, (2009) · Zbl 1205.34089
[20] Yuan, S.; Song, Y., Stability and Hopf bifurcations in a delayed leslie – gower predator – prey system, Journal of mathematical analysis and applications, 355, 1, 82-100, (2009) · Zbl 1170.34051
[21] Aguirre, P.; González-Olivares, E.; Sáez, E., Two limit cycles in a leslie – gower predator – prey model with additive allee effect, Nonlinear analysis. real world applications, 10, 3, 1401-1416, (2009) · Zbl 1160.92038
[22] Aguirre, P.; González-Olivares, E.; Sáez, E., Three limit cycles in a leslie – gower predator – prey model with additive allee effect, SIAM journal on applied mathematics, 69, 5, 1244-1269, (2009) · Zbl 1184.92046
[23] Neuhauser, C., Mathematical challenges in spatial ecology, Notices of the American mathematical society, 48, 11, 1304-1314, (2001) · Zbl 1128.92328
[24] Cantrell, R.; Cosner, C., Spatial ecology via reaction – diffusion equations, (2003), Wiley West Sussex · Zbl 1059.92051
[25] Camara, B.; Aziz-Alaoui, M., Dynamics of predator – prey model with diffusion, Dynamics of continuous, discrete and impulsive systems, 15, 897-906, (2008) · Zbl 1170.35052
[26] Camara, B.; Aziz-Alaoui, M., Turing and Hopf patterns formation in a predator – prey model with leslie – gower-type functional response, Dynamics of continuous, discrete and impulsive systems, 16, 1-11, (2009) · Zbl 1173.35340
[27] B. Camara, Complexité de dynamiques de modèles proie – prédateur avec diffusion et applications, Ph.D. Thesis, Universitè du Havre, Lorient, 2009.
[28] McNair, J., The effects of refuges on predator – prey interactions: a reconsideration, Theoretical population biology, 29, 1, 38-63, (1986) · Zbl 0594.92017
[29] Sih, A., Prey refuges and predator – prey stability, Theoretical population biology, 31, 1, 1-12, (1987)
[30] Hausrath, A., Analysis of a model predator – prey system with refuges, Journal of mathematical analysis and applications, 181, 2, 531-545, (1994) · Zbl 0799.34047
[31] Hochberg, M.; Holt, R., Refuge evolution and the population dynamics of coupled host-parasitiod associations, Evolutionary ecology, 9, 6, 633-661, (1995)
[32] Ives, A.; Dobson, A., Antipredator behavior and the population dynamics of simple predator – prey systems, The American naturalist, 130, 3, 431-447, (1987)
[33] Ruxton, G., Short term refuge use and stability of predator – prey models, Theoretical population biology, 47, 1, 1-17, (1995) · Zbl 0812.92023
[34] Krivan, V., Effects of optimal antipredator behavior of prey on predator – prey dynamics: the role of refuges, Theoretical population biology, 53, 2, 131-142, (1998) · Zbl 0945.92021
[35] Gonzalez-Olivares, E.; Ramos-Jiliberto, R., Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecological modelling, 166, 1-2, 135-146, (2003)
[36] Kar, T., Stability analysis of a prey – predator model incorporating a prey refuge, Communications in nonlinear science and numerical simulation, 10, 6, 681-691, (2005) · Zbl 1064.92045
[37] Huang, Y.; Chen, F.; Zhong, L., Stability analysis of a prey – predator model with Holling type III response function incorporating a prey refuge, Applied mathematics and computation, 182, 1, 672-683, (2006) · Zbl 1102.92056
[38] Srinivasu, P.; Gayatri, I., Influence of prey reserve capacity on predator – prey dynamics, Ecological modelling, 181, 2-3, 191-202, (2005)
[39] Ko, W.; Ryu, K., Qualitative analysis of a predator – prey model with Holling type II functional response incorporating a prey refuge, Journal of differential equations, 231, 2, 534-550, (2006) · Zbl 1387.35588
[40] Kar, K., Modelling and analysis of a harvested prey – predator system incorporating a prey refuge, Journal of computational and applied mathematics, 185, 1, 19-33, (2006) · Zbl 1071.92041
[41] Collings, J., Bifurcation and stability analysis of a temperature-dependent mite predator – prey interaction model incorporating a prey refuge, Bulletin of mathematical biology, 57, 1, 63-76, (1995) · Zbl 0810.92024
[42] Ma, Z.; Li, W.; Zhao, Y.; Wang, W.; Zhang, H.; Li, Z., Effects of prey refuges on a predator – prey model with a class of functional responses: the role of refuges, Mathematical biosciences, 218, 2, 73-79, (2009) · Zbl 1160.92043
[43] Chattopadhyay, J.; Tapaswi, P., Effect of cross-diffusion on pattern formation—a nonlinear analysis, Acta applicandae mathematicae, 48, 1, 1-12, (1997) · Zbl 0904.92011
[44] Wang, W.; Liu, Q.; Jin, Z., Spatiotemporal complexity of a ratio-dependent predator – prey system, Physical review E, 75, 5, 051913, (2007)
[45] Garvie, M., Finite-difference schemes for reaction – diffusion equations modeling predator – prey interactions in MATLAB, Bulletin of mathematical biology, 69, 3, 931-956, (2007) · Zbl 1298.92081
[46] Munteanu, A.; Sole, R., Pattern formation in noisy self-replicating spots, International journal of bifurcation and chaos, 16, 12, 3679-3683, (2006) · Zbl 1113.92007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.