zbMATH — the first resource for mathematics

\(G\)-completeness and \(M\)-completeness in fuzzy metric spaces: a note on a common fixed point theorem. (English) Zbl 1224.54072
\(G\)-completeness was introduced by M. Grabiec [Fuzzy Sets Syst. 27, No. 3, 385–389 (1983; Zbl 0664.54032)] in order to obtain a fuzzy version of the Banach contraction principle. In 2008, a common fixed point theorem in \(G\)-complete fuzzy metric spaces under the t-norm Min was proved by S. Kumar [Acta Math. Hung. 118, No. 1–2, 9–28 (2008; Zbl 1164.47058)]: Every \(G\)-complete fuzzy metric space is \(M\)-complete. In this paper, the authors prove that the common fixed point theorem does hold even if \(G\)-completeness of the space is replaced by \(M\)-completeness or if the strongest t-norm Min is replaced with an arbitrary continuous t-norm.
Reviewer: Shou Lin (Ningde)

54E70 Probabilistic metric spaces
54H25 Fixed-point and coincidence theorems (topological aspects)
54A40 Fuzzy topology
Full Text: DOI
[1] A. George and P. Veermani, On some results in fuzzy metric space, Fuzzy Sets and Systems, 64 (1994), 395–399. · Zbl 0843.54014 · doi:10.1016/0165-0114(94)90162-7
[2] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1983), 385–389. · Zbl 0664.54032 · doi:10.1016/0165-0114(88)90064-4
[3] V. Gregori and A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), 245–252. · Zbl 0995.54046 · doi:10.1016/S0165-0114(00)00088-9
[4] O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers (Dordrecht, 2001).
[5] G. Jungck, Common fixed points for noncontinuous nonself mappings on nonmetric spaces, Far East J. Math. Sci., 4 (1996), 199–212. · Zbl 0928.54043
[6] I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 326–334. · Zbl 0319.54002
[7] S. Kumar, Common fixed point theorems for expansion mappings in various spaces, Acta Math. Hungar., 118 (2008), 9–28. · Zbl 1164.47058 · doi:10.1007/s10474-007-6142-2
[8] D. Miheţ, On the existence and the uniqueness of fixed points of Sehgal contractions, Fuzzy Sets and Systems, 156 (2005), 135–141. · Zbl 1082.54022 · doi:10.1016/j.fss.2005.05.024
[9] D. Miheţ, Fuzzy \(\psi\)-contractive mappings in non-Archimedean fuzzy metric spaces, Fuzzy Sets and Systems, 159 (2008), 739–744. · Zbl 1171.54330 · doi:10.1016/j.fss.2007.07.006
[10] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland (Amsterdam, 1983). · Zbl 0546.60010
[11] V. M. Sehgal and A. T. Bharucha-Reid, Fixed points of contraction mappings on PM-spaces, Math. System Theory, 6(1972), 97–102. · Zbl 0244.60004 · doi:10.1007/BF01706080
[12] P. Tirado, Contractive Maps and Complexity Analysis in Fuzzy Quasi-Metric Spaces, Ph. D. Thesis, Univ. Polit. Valencia (2008).
[13] R. Vasuki and P. Veeramani, Fixed point theorems and Cauchy sequences in fuzzy metric spaces, Fuzzy Sets and Systems, 135 (2003), 409–413. · Zbl 1029.54012 · doi:10.1016/S0165-0114(02)00132-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.