zbMATH — the first resource for mathematics

Golem95C: a library for one-loop integrals with complex masses. (English) Zbl 1223.81172
Summary: We present a program for the numerical evaluation of scalar integrals and tensor form factors entering the calculation of one-loop amplitudes which supports the use of complex masses in the loop integrals. The program is built on an earlier version of the golem95 library, which performs the reduction to a certain set of basis integrals using a formalism where inverse Gram determinants can be avoided. It can be used to calculate one-loop amplitudes with arbitrary masses in an algebraic approach as well as in the context of unitarity-inspired numerical reconstruction of the integrand.

81V35 Nuclear physics
81-08 Computational methods for problems pertaining to quantum theory
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81T18 Feynman diagrams
Full Text: DOI
[1] van Hameren, A.; Papadopoulos, C.G.; Pittau, R., Automated one-loop calculations: a proof of concept, Jhep, 0909, 106, (2009)
[2] van Hameren, A., Oneloop: for the evaluation of one-loop scalar functions · Zbl 1262.81253
[3] Hahn, T.; Perez-Victoria, M., Automatized one-loop calculations in four and D dimensions, Comput. phys. commun., 118, 153-165, (1999)
[4] Hahn, T., Feynman diagram calculations with feynarts, formcalc, and looptools
[5] Bern, Z., The NLO multileg working group: summary report
[6] Andersen, J.R., The SM and NLO multileg working group: summary report
[7] Ossola, G.; Papadopoulos, C.G.; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, Jhep, 0803, 042, (2008)
[8] Mastrolia, P.; Ossola, G.; Reiter, T.; Tramontano, F., Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, Jhep, 1008, 080, (2010) · Zbl 1290.81151
[9] Heinrich, G.; Ossola, G.; Reiter, T.; Tramontano, F., Tensorial reconstruction at the integrand level, Jhep, 1010, 105, (2010) · Zbl 1291.81389
[10] Hahn, T., Generating Feynman diagrams and amplitudes with feynarts 3, Comput. phys. commun., 140, 418-431, (2001) · Zbl 0994.81082
[11] Hahn, T.; Rauch, M., News from formcalc and looptools, Nucl. phys. (proc. suppl.), 157, 236-240, (2006)
[12] Campbell, J.; Ellis, R.K., Next-to-leading order corrections to W+2jet and Z+2jet production at hadron colliders, Phys. rev. D, 65, 113007, (2002)
[13] Arnold, K., VBFNLO: A parton level Monte Carlo for processes with electroweak bosons, Comput. phys. commun., 180, 1661-1670, (2009)
[14] van Oldenborgh, G.J.; Vermaseren, J.A.M., New algorithms for one loop integrals, Z. phys. C, 46, 425-438, (1990)
[15] van Oldenborgh, G.J., FF: A package to evaluate one loop Feynman diagrams, Comput. phys. commun., 66, 1-15, (1991) · Zbl 0997.65518
[16] Ellis, R.K.; Zanderighi, G., Scalar one-loop integrals for QCD, Jhep, 0802, 002, (2008)
[17] Binoth, T.; Guillet, J.P.; Heinrich, G.; Pilon, E.; Reiter, T., Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs, Comput. phys. commun., 180, 2317-2330, (2009) · Zbl 1197.81004
[18] Diakonidis, T.; Fleischer, J.; Riemann, T.; Tausk, B., A recursive approach to the reduction of tensor Feynman integrals, Pos, RADCOR2009, 033, (2010)
[19] Nhung, D.T.; Ninh, L.D., D0C: A code to calculate scalar one-loop four-point integrals with complex masses, Comput. phys. commun., 180, 2258-2267, (2009) · Zbl 1197.81009
[20] Denner, A.; Dittmaier, S., Scalar one-loop 4-point integrals · Zbl 1207.81167
[21] ʼt Hooft, G.; Veltman, M.J.G., Scalar one loop integrals, Nucl. phys. B, 153, 365-401, (1979)
[22] Fabricius, K.; Schmitt, I., Calculation of dimensionally regularized box graphs in the zero mass case, Z. phys. C, 3, 51-53, (1979)
[23] Beenakker, W.; Denner, A., Infrared divergent scalar box integrals with applications in the electroweak standard model, Nucl. phys. B, 338, 349-370, (1990)
[24] Denner, A.; Nierste, U.; Scharf, R., A compact expression for the scalar one loop four point function, Nucl. phys. B, 367, 637-656, (1991)
[25] Bern, Z.; Dixon, L.J.; Kosower, D.A., Dimensionally regulated one loop integrals, Phys. lett. B, 302, 299-308, (1993)
[26] Bern, Z.; Dixon, L.J.; Kosower, D.A., Dimensionally regulated pentagon integrals, Nucl. phys. B, 412, 751-816, (1994) · Zbl 1007.81512
[27] Denner, A.; Dittmaier, S.; Roth, M.; Wackeroth, D., Predictions for all processes \(e^+ e^- \rightarrow 4\) fermions+gamma, Nucl. phys. B, 560, 33-65, (1999)
[28] Denner, A.; Dittmaier, S.; Roth, M.; Wieders, L.H., Electroweak corrections to charged-current \(e^+ e^- \rightarrow 4\) fermion processes: technical details and further results, Nucl. phys. B, 724, 247-294, (2005)
[29] Actis, S.; Passarino, G.; Sturm, C.; Uccirati, S., Two-loop threshold singularities, unstable particles and complex masses, Phys. lett. B, 669, 62-68, (2008)
[30] Passarino, G.; Sturm, C.; Uccirati, S., Higgs pseudo-observables, second Riemann sheet and all that, Nucl. phys. B, 834, 77-115, (2010) · Zbl 1204.81190
[31] Binoth, T.; Guillet, J.P.; Heinrich, G.; Pilon, E.; Schubert, C., An algebraic/numerical formalism for one-loop multi-leg amplitudes, Jhep, 0510, 015, (2005)
[32] Binoth, T.; Guillet, J.P.; Heinrich, G., Reduction formalism for dimensionally regulated one-loop N-point integrals, Nucl. phys. B, 572, 361-386, (2000)
[33] Duplancic, G.; Nizic, B., Reduction method for dimensionally regulated one-loop N-point Feynman integrals, Eur. phys. J. C, 35, 105-118, (2004) · Zbl 1191.81116
[34] Giele, W.T.; Glover, E.W.N., A calculational formalism for one-loop integrals, Jhep, 0404, 029, (2004)
[35] del Aguila, F.; Pittau, R., Recursive numerical calculus of one-loop tensor integrals, Jhep, 0407, 017, (2004)
[36] van Hameren, A.; Vollinga, J.; Weinzierl, S., Automated computation of one-loop integrals in massless theories, Eur. phys. J. C, 41, 361-375, (2005)
[37] Denner, A.; Dittmaier, S., Reduction schemes for one-loop tensor integrals, Nucl. phys. B, 734, 62-115, (2006) · Zbl 1192.81158
[38] Fleischer, J.; Riemann, T., A complete algebraic reduction of one-loop tensor Feynman integrals
[39] Davydychev, A.I., A simple formula for reducing Feynman diagrams to scalar integrals, Phys. lett. B, 263, 107-111, (1991)
[40] Bjorken, J.; Drell, S., Relativistic quantum field theory, (1965), McGraw-Hill New York · Zbl 0184.54201
[41] Goria, S.; Passarino, G., Anomalous threshold as the pivot of Feynman amplitudes, Nucl. phys. (proc. suppl.), 183, 320-325, (2008)
[42] Denner, A.; Dittmaier, S.; Hahn, T., Radiative corrections to \(Z Z \rightarrow Z Z\) in the electroweak standard model, Phys. rev. D, 56, 117-134, (1997)
[43] Boudjema, F.; Ninh, L.D., B anti-b Higgs production at the LHC: Yukawa corrections and the leading Landau singularity, Phys. rev. D, 78, 093005, (2008)
[44] Nagy, Z.; Soper, D.E., Numerical integration of one-loop Feynman diagrams for N-photon amplitudes, Phys. rev. D, 74, 093006, (2006)
[45] Bernicot, C.; Guillet, J.P., Six-photon amplitudes in scalar QED, Jhep, 0801, 059, (2008)
[47] G.V. Vaughan, B. Elliston, T. Tromey, I.L. Taylor, GNU Autoconf, Automake, and Libtool: Expert insight into porting software and building large projects using GNU Autotools, New Riders, Indianapolis, 2000.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.