×

Dust ion-acoustic solitary waves in a hot adiabatic magnetized dusty plasma. (English) Zbl 1223.76130

Summary: The basic features of obliquely propagating dust ion-acoustic (DIA) solitary waves in a hot adiabatic magnetized dusty plasma (containing adiabatic inertia-less electrons, adiabatic inertial ions, and negatively charged static dust) have been investigated. The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV) equation which admits a small amplitude solitary wave solution. The combined effects of plasma particle (electron and ion) adiabaticity, ion-dust collision, and external magnetic field (obliqueness), which are found to significantly modify the basic features of the small but finite-amplitude DIA solitary waves are explicitly examined. The implications of our results in space and laboratory dusty plasmas are briefly discussed.

MSC:

76X05 Ionized gas flow in electromagnetic fields; plasmic flow
76W05 Magnetohydrodynamics and electrohydrodynamics
76T15 Dusty-gas two-phase flows
76Q05 Hydro- and aero-acoustics
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Shukla, P.K., Phys. plasmas, 8, 1791, (2001)
[2] Mendis, D.A.; Rosenberg, M., Annu. rev. astron. astrophys., 32, 419, (1994)
[3] Shukla, P.K.; Mamun, A.A., Introduction to dusty plasma physics, (2002), IoP Publishing Ltd. Bristol
[4] Tsytovich, V.N.; Morfill, G.E.; Thomas, H., Plasma phys. rep., 28, 623, (2002)
[5] Barkan, A.; Merlino, R.L.; D’Angelo, N., Phys. plasmas, 2, 3563, (1995)
[6] Barkan, A.; D’Angelo, N.; Merlino, R.L., Planet. space sci., 44, 239, (1996)
[7] Merlino, R.L.; Barkan, A.; Thompson, C.; D’Angelo, N., Phys. plasmas, 5, 1607, (1998)
[8] Homann, A.; Melzer, A.; Peters, S.; Piel, A., Phys. rev. E, 56, 7138, (1997)
[9] Morfill, G.E.; Tsytovich, V.N.; Thomas, H., Plasma phys. rep., 29, 1, (2003)
[10] Fortov, V.E.; Ivlev, A.V.; Khrapak, S.A.; Khrapak, A.G.; Morfill, G.E., Phys. rep., 421, 1, (2005)
[11] Bliokh, P.V.; Yaroshenko, V.V., Sov. astron., 29, 330, (1985)
[12] de Angelis, U.; Formisano, V.; Giordano, M., J. plasma phys., 40, 399, (1988)
[13] Shukla, P.K.; Stenflo, L., Astrophys. space sci., 190, 23, (1992)
[14] D’Angelo, N., Planet. space sci., 38, 1143, (1990)
[15] Shukla, P.K.; Silin, V.P., Phys. scr., 45, 508, (1992)
[16] Rao, N.N.; Shukla, P.K.; Yu, M.Y., Planet. space sci., 38, 543, (1990)
[17] Milandsø, F., Phys. plasmas, 3, 3890, (1996)
[18] Yu, M.Y.; Shukla, P.K.; Bujarbarua, S., Phys. fluids, 23, 2146, (1980)
[19] Shukla, P.K.; Rosenberg, M., Phys. plasmas, 6, 1038, (1999)
[20] Shukla, P.K.; Mamun, A.A., New J. phys., 5, 17.1, (2003)
[21] Bharuthram, R.; Shukla, P.K., Planet. space sci., 40, 973, (1992)
[22] Nakamura, Y.; Bailung, H.; Shukla, P.K., Phys. rev. lett., 83, 1602, (1999)
[23] Nakamura, Y.; Sharma, A., Phys. plasmas, 8, 3921, (2001)
[24] Mamun, A.A.; Shukla, P.K., Phys. plasmas, 9, 1470, (2002)
[25] Mamun, A.A.; Shukla, P.K., IEEE trans. plasma sci., 30, 720, (2002)
[26] Mamun, A.A.; Shukla, P.K., Plasma phys. controled fusion, 47, A1, (2005)
[27] Mamun, A.A., Phys. lett. A, 372, 1490, (2008)
[28] Witt, E.; Lotko, W., Phys. fluids, 26, 2176, (1983)
[29] Shukla, P.K.; Yu, M.Y., J. math. phys., 19, 2506, (1978)
[30] Lee, L.C.; Kan, J.R., Phys. fluids, 24, 430, (1981)
[31] Washimi, H.; Taniuti, T., Phys. rev. lett., 17, 996, (1966)
[32] Shukla, P.K.; Yu, M.Y.; Bharuthram, R., J. geophys. res., 96, 21343, (1991)
[33] Goertz, C.K., Rev. geophys., 27, 271, (1989)
[34] Merlino, R.L.; Goree, J., Phys. today, 57, 32, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.