×

zbMATH — the first resource for mathematics

Wellposedness and zero microrotation viscosity limit of the 2D micropolar fluid equations. (English) Zbl 1222.76027
Summary: We consider the 2D micropolar fluid equations in the whole space \(\mathbb R^2\). We prove the global wellposedness of the system with rough initial data and show the vanishing microrotation viscosity limit in the case of zero kinematic viscosity or zero angular viscosity.

MSC:
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D09 Viscous-inviscid interaction
35Q35 PDEs in connection with fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abidi, On the global well-posedness for Boussinesq system, Journal of Differential Equations 223 pp 199– (2007) · Zbl 1111.35032 · doi:10.1016/j.jde.2006.10.008
[2] Beale, Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Communications in Mathematical Physics 94 pp 61– (1984) · Zbl 0573.76029 · doi:10.1007/BF01212349
[3] Chemin, Perfect incompressible fluids (1998)
[4] Chen Q Miao C Global well-posedness for the micropolar fluid system in the critical Besov spaces · Zbl 1234.35193
[5] Córdoba, A maximum principle applied to the quasi-geostrophic equations, Communications in Mathematical Physics 249 pp 511– (2004) · Zbl 1309.76026 · doi:10.1007/s00220-004-1055-1
[6] Danchin, Estimates in Besov spaces for transport and transport-diffusion equations with almost Lipschitz coefficients, Revista Matemática Iberoamericana 21 (3) pp 861– (2005) · Zbl 1098.35038
[7] Danchin, Uniform estimates for transport-diffusion equations, Journal of Hyperbolic Differential Equations 4 (1) pp 1– (2007) · Zbl 1117.35012 · doi:10.1142/S021989160700101X
[8] Dong, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, Journal of Differential Equations 249 (1) pp 200– (2010) · Zbl 1402.35220 · doi:10.1016/j.jde.2010.03.016
[9] Eringen, Theory of micropolar fluids, Journal of Mathematics and Mechanics 16 pp 1– (1966) · Zbl 0145.21302
[10] Hmidi, Global well-posedness for Euler-Boussinesq system with critical dissipation, Communications in Partial Differential Equations 36 (3) pp 420– (2011) · Zbl 1284.76089 · doi:10.1080/03605302.2010.518657
[11] Hmidi, Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation, Journal of Differential Equations 249 (9) pp 2147– (2010) · Zbl 1200.35228 · doi:10.1016/j.jde.2010.07.008
[12] Lange, The existence of instationary flows of incompressible micropolar fluids, Archives of Mechanics 29 pp 741– (1977) · Zbl 0378.76009
[13] Łukaszewicz, Modeling and Simulation in Science, Engineering, & Technology (1999)
[14] Łukaszewicz, Long time behaviour of the 2D micropolar fluid flows, Mathatical and Computer Modelling 34 pp 487– (2001) · Zbl 1020.76003 · doi:10.1016/S0895-7177(01)00078-4
[15] Majda, Applied Mathematics Sciences 53, in: Compressible fluid flow and systems of conservation laws in several space variables (1984) · doi:10.1007/978-1-4612-1116-7
[16] Payne, Order of convergence estimates on the interaction term for a micropolar fluid, International Journal of Engineering Science 27 (7) pp 837– (1989) · Zbl 0697.76011 · doi:10.1016/0020-7225(89)90049-9
[17] Resndiz, Existence of weak solution of micropolar fluid equations in a time dependent domain, Revista de Matemáticas Aplicadas 23 pp 27– (2002)
[18] Sun, A Beale-Kato-Majda Blow-up criterion for the 3-D compressible Navier-Stokes equations, Journal de Mathématiques Pures et Appliquées 95 (1) pp 36– (2011) · Zbl 1205.35212 · doi:10.1016/j.matpur.2010.08.001
[19] Szopa, On existence and regularity of solutions for 2-D micropolar fluid equations with periodic boundary conditions, Mathematical Methods in the Applied Sciences 30 pp 331– (2007) · Zbl 1124.35067 · doi:10.1002/mma.788
[20] Vishik, Hydrodynamics in Besov Spaces, Archive for Rational Mechanics and Analysis 145 pp 197– (1998) · Zbl 0926.35123 · doi:10.1007/s002050050128
[21] Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain, Mathematical Methods in the Applied Sciences 28 pp 1507– (2005) · Zbl 1078.35096 · doi:10.1002/mma.617
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.