zbMATH — the first resource for mathematics

A generalized gradient smoothing technique and the smoothed bilinear form for Galerkin formulation of a wide class of computational methods. (English) Zbl 1222.74044
Summary: This paper presents a generalized gradient smoothing technique, the corresponding smoothed bilinear forms, and the smoothed Galerkin weakform that is applicable to create a wide class of efficient numerical methods with special properties including the upper bound properties. A generalized gradient smoothing technique is first presented for computing the smoothed strain fields of displacement functions with discontinuous line segments, by ”rudely” enforcing the Green’s theorem over the smoothing domain containing these discontinuous segments. A smoothed bilinear form is then introduced for Galerkin formulation using the generalized gradient smoothing technique and smoothing domains constructed in various ways. The numerical methods developed based on this smoothed bilinear form will be spatially stable and convergent and possess three major important properties: (1) it is variationally consistent, if the solution is sought in a Hilbert space; (2) the stiffness of the discretized model will be reduced compared to the model of the finite element method (FEM) and often the exact model, which allows us to obtain upper bound solutions with respect to both the FEM solution and the exact solution; (3) the solution of the numerical method developed using the smoothed bilinear form is less insensitive to the quality of the mesh, and triangular meshes can be used perfectly without any problems. These properties have been proved, examined, and confirmed by the numerical examples. The smoothed bilinear form establishes a unified theoretical foundation for a class of smoothed Galerkin methods to analyze solid mechanics problems for solutions of special and unique properties: the node-based smoothed point interpolation method (NS-PIM), smoothed finite element method (SFEM), node-based smoothed finite element method (N-SFEM), edge-based smoothed finite element method (E-SFEM), cell-based smoothed point interpolation method (CS-PIM), etc.
Reviewer: Reviewer (Berlin)

74S05 Finite element methods applied to problems in solid mechanics
74S30 Other numerical methods in solid mechanics (MSC2010)
74B05 Classical linear elasticity
Full Text: DOI
[1] DOI: 10.1002/(SICI)1097-0207(20000310)47:7<1303::AID-NME826>3.0.CO;2-5 · Zbl 0987.74079 · doi:10.1002/(SICI)1097-0207(20000310)47:7<1303::AID-NME826>3.0.CO;2-5
[2] DOI: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A · Zbl 1011.74081 · doi:10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
[3] DOI: 10.1016/j.finel.2007.05.009 · doi:10.1016/j.finel.2007.05.009
[4] DOI: 10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K · Zbl 0989.74067 · doi:10.1002/(SICI)1097-0207(20000330)47:9<1549::AID-NME842>3.0.CO;2-K
[5] DOI: 10.1016/0020-7225(72)90039-0 · Zbl 0247.73005 · doi:10.1016/0020-7225(72)90039-0
[6] Hughes T. J. R., The Finite Element Method (1987) · Zbl 0634.73056
[7] DOI: 10.1007/s00466-006-0057-6 · Zbl 1178.74182 · doi:10.1007/s00466-006-0057-6
[8] DOI: 10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X · Zbl 1050.74057 · doi:10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
[9] DOI: 10.1201/9781420040586 · doi:10.1201/9781420040586
[10] DOI: 10.1142/9789812564405 · doi:10.1142/9789812564405
[11] Liu G. R., Finite Element Method: A Practical Course (2003)
[12] Liu G. R., An Introduction to MFree Methods and Their Programming (2005)
[13] DOI: 10.1142/S0219876205000661 · Zbl 1137.74303 · doi:10.1142/S0219876205000661
[14] DOI: 10.1142/S0219876206001132 · Zbl 1198.74120 · doi:10.1142/S0219876206001132
[15] DOI: 10.1007/s00466-006-0075-4 · Zbl 1169.74047 · doi:10.1007/s00466-006-0075-4
[16] DOI: 10.1002/nme.1968 · Zbl 1194.74432 · doi:10.1002/nme.1968
[17] Liu G. R., Computers and Structures
[18] DOI: 10.1002/nme.2204 · Zbl 1158.74532 · doi:10.1002/nme.2204
[19] Liu G. R., J. Sound. Vib.
[20] Liu G. R., Computational Mechanics
[21] Liu G. R., Computer Methods in Applied Mechanics and Engineering
[22] Liu G. R., International Journal for Numerical Methods in Engineering
[23] DOI: 10.1086/112164 · doi:10.1086/112164
[24] DOI: 10.1137/0903027 · Zbl 0498.76010 · doi:10.1137/0903027
[25] DOI: 10.1016/0020-7683(68)90014-0 · Zbl 0174.41601 · doi:10.1016/0020-7683(68)90014-0
[26] DOI: 10.1007/s00466-006-0154-6 · Zbl 1176.76100 · doi:10.1007/s00466-006-0154-6
[27] Pian T. H. H., Hybrid and Incompatible Finite Element Methods (2006) · Zbl 1110.65003
[28] Simo J. C., Computational Inelasticity (1998) · Zbl 0934.74003
[29] Timoshenko S. P., Theory of Elasticity (1970) · Zbl 0266.73008
[30] DOI: 10.1002/nme.489 · Zbl 1098.74741 · doi:10.1002/nme.489
[31] Wu H. C., Variational Principle in Elasticity and Applications (1982)
[32] DOI: 10.1016/j.physleta.2005.09.036 · doi:10.1016/j.physleta.2005.09.036
[33] DOI: 10.1142/S0219876207001308 · Zbl 1198.74123 · doi:10.1142/S0219876207001308
[34] DOI: 10.1002/nme.2050 · Zbl 1194.74543 · doi:10.1002/nme.2050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.