×

The \(M\)-Wright function in time-fractional diffusion processes: a tutorial survey. (English) Zbl 1222.60060

Summary: We survey the properties of a transcendental function of the Wright type, nowadays known as \(M\)-Wright function, entering as a probability density in a relevant class of self-similar stochastic processes that we generally refer to as time-fractional diffusion processes. Indeed, the master equations governing these processes generalize the standard diffusion equation by means of time-integral operators interpreted as derivatives of fractional order. When these generalized diffusion processes are properly characterized with stationary increments, the \(M\)-Wright function is shown to play the same key role as the Gaussian density in the standard and the fractional Brownian motion. Furthermore, these processes provide stochastic models suitable for describing phenomena of anomalous diffusion of both slow and fast type.

MSC:

60J60 Diffusion processes
26A33 Fractional derivatives and integrals
60G17 Sample path properties
35R11 Fractional partial differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv EuDML

References:

[1] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian motions, fractional noises and applications,” SIAM Review, vol. 10, pp. 422-437, 1968. · Zbl 0179.47801
[2] M. S. Taqqu, “Fractional Brownian motion and long-range dependence,” in Theory and Applications of Long-Range Dependence, P. Doukan, G. Oppenheim, and M. S. Taqqu, Eds., pp. 5-38, Birkhäuser, Boston, Mass, USA, 2003. · Zbl 1039.60041
[3] R. Gorenflo, F. Mainardi, and A. Vivoli, “Continuous-time random walk and parametric subordination in fractional diffusion,” Chaos, Solitons & Fractals, vol. 34, no. 1, pp. 87-103, 2007. · Zbl 1142.82363
[4] M. M. Meerschaert, D. A. Benson, H.-P. Scheffler, and B. Baeumer, “Stochastic solution of space-time fractional diffusion equations,” Physical Review E, vol. 65, no. 4, Article ID 041103, 4 pages, 2002. · Zbl 1244.60080
[5] R. Metzler and J. Klafter, “The random walk/s guide to anomalous diffusion: a fractional dynamics approach,” Physics Reports A, vol. 339, no. 1, pp. 1-77, 2000. · Zbl 0984.82032
[6] E. Scalas, R. Gorenflo, and F. Mainardi, “Uncoupled continuous-time random walks: solution and limiting behavior of the master equation,” Physical Review E, vol. 69, no. 1, Article ID 011107, 8 pages, 2004. · Zbl 1087.60064
[7] A. A. Dubkov, B. Spagnolo, and V. V. Uchaikin, “Lévy flight superdiffusion: an introduction,” International Journal of Bifurcation and Chaos, vol. 18, no. 9, pp. 2649-2672, 2008. · Zbl 1157.82300
[8] W. R. Schneider, “Grey noise,” in Stochastic Processes, Physics and Geometry (Ascona and Locarno, 1988), S. Albeverio, G. Casati, U. Cattaneo, D. Merlini, and R. Moresi, Eds., pp. 676-681, World Scientific, Teaneck, NJ, USA, 1990.
[9] W. R. Schneider, “Grey noise,” in Ideas and Methods in Mathematical Analysis, Stochastics, and Applications (Oslo, 1988), S. Albeverio, J. E. Fenstad, H. Holden, and T. Lindstrøm, Eds., pp. 261-282, Cambridge University Press, Cambridge, UK, 1992. · Zbl 0761.60036
[10] A. V. Chechkin, R. Gorenflo, and I. M. Sokolov, “Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations,” Physical Review E, vol. 66, no. 4, Article ID 046129, 7 pages, 2002.
[11] A. V. Chechkin, R. Gorenflo, I. M. Sokolov, and V. Yu. Gonchar, “Distributed order time fractional diffusion equation,” Fractional Calculus & Applied Analysis, vol. 6, no. 3, pp. 259-279, 2003. · Zbl 1089.60046
[12] A. V. Chechkin, V. Yu. Gonchar, R. Gorenflo, N. Korabel, and I. M. Sokolov, “Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights,” Physical Review E, vol. 78, no. 2, Article ID 021111, 13 pages, 2008.
[13] R. Gorenflo, F. Mainardi, D. Moretti, and P. Paradisi, “Time fractional diffusion: a discrete random walk approach,” Nonlinear Dynamics, vol. 29, no. 1-4, pp. 129-143, 2002. · Zbl 1009.82016
[14] R. Gorenflo, F. Mainardi, D. Moretti, G. Pagnini, and P. Paradisi, “Discrete random walk models for space-time fractional diffusion,” Chemical Physics, vol. 284, no. 1-2, pp. 521-541, 2002. · Zbl 0986.82037
[15] F. Liu, S. Shen, V. Anh, and I. Turner, “Analysis of a discrete non-Markovian random walk approximation for the time fractional diffusion equation,” The ANZIAM Journal, vol. 46, pp. C488-C504, 2005. · Zbl 1082.60511
[16] F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage, “Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation,” Applied Mathematics and Computation, vol. 191, no. 1, pp. 12-20, 2007. · Zbl 1193.76093
[17] Y. Zhang, D. A. Benson, M. M. Meerschaert, and H.-P. Scheffler, “On using random walks to solve the space-fractional advection-dispersion equations,” Journal of Statistical Physics, vol. 123, no. 1, pp. 89-110, 2006. · Zbl 1092.82038
[18] P. Zhuang and F. Liu, “Implicit difference approximation for the time fractional diffusion equation,” Journal of Applied Mathematics & Computing, vol. 22, no. 3, pp. 87-99, 2006. · Zbl 1140.65094
[19] A. Mura, Non-Markovian stochastic processes and their applications: from anomalous diffusion to time series analysis, Ph.D. thesis, Department of Physics, University of Bologna, March 2008, Supervisor Prof. F. Mainardi, http://www.fracalmo.org/mura/.
[20] A. Mura and F. Mainardi, “A class of self-similar stochastic processes with stationary increments to model anomalous diffusion in physics,” Integral Transforms and Special Functions, vol. 20, no. 3-4, pp. 185-198, 2009. · Zbl 1173.26005
[21] A. Mura and G. Pagnini, “Characterizations and simulations of a class of stochastic processes to model anomalous diffusion,” Journal of Physics A, vol. 41, no. 28, Article ID 285003, 22 pages, 2008. · Zbl 1143.82028
[22] A. Mura, M. S. Taqqu, and F. Mainardi, “Non-Markovian diffusion equations and processes: analysis and simulations,” Physica A, vol. 387, no. 21, pp. 5033-5064, 2008.
[23] M. Caputo, “Linear models of dissipation whose Q is almost frequency independent-part II,” Geophysical Journal of the Royal Astronomical Society, vol. 13, pp. 529-539, 1967.
[24] M. Caputo, Elasticity and Dissipation, Zanichelli, Bologna, Italy, 1969.
[25] R. Gorenflo and F. Mainardi, “Fractional calculus: integral and differential equations of fractional order,” in Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), A. Carpinteri and F. Mainardi, Eds., vol. 378 of CISM Courses and Lectures, pp. 223-276, Springer, Vienna, Austria, 1997. · Zbl 0916.34011
[26] F. Mainardi and R. Gorenflo, “Time-fractional derivatives in relaxation processes: a tutorial survey,” Fractional Calculus & Applied Analysis, vol. 10, no. 3, pp. 269-308, 2007. · Zbl 1157.26304
[27] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 0924.34008
[28] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, The Netherlands, 2006. · Zbl 1092.45003
[29] E. M. Wright, “On the coefficients of power series having exponential singularities,” Journal of the London Mathematical Society, vol. 8, pp. 71-79, 1933. · JFM 59.0383.01
[30] E. M. Wright, “The asymptotic expansion of the generalized Bessel function,” Proceedings of the London Mathematical Society, vol. 38, pp. 257-270, 1935. · Zbl 0010.21103
[31] E. M. Wright, “The asymptotic expansion of the generalized hypergeometric function,” Journal of the London Mathematical Society, vol. 10, pp. 287-293, 1935. · Zbl 0013.02104
[32] E. M. Wright, “The generalized Bessel function of order greater than one,” The Quarterly Journal of Mathematics, vol. 11, pp. 36-48, 1940. · Zbl 0023.14101
[33] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions, vol. 3, chapter 18, McGraw-Hill, New-York, NY, USA, 1954. · Zbl 0064.06302
[34] R. Gorenflo, Yu. Luchko, and F. Mainardi, “Analytical properties and applications of the Wright function,” Fractional Calculus & Applied Analysis, vol. 2, no. 4, pp. 383-414, 1999. · Zbl 1027.33006
[35] R. Gorenflo, Yu. Luchko, and F. Mainardi, “Wright functions as scale-invariant solutions of the diffusion-wave equation,” Journal of Computational and Applied Mathematics, vol. 118, no. 1-2, pp. 175-191, 2000. · Zbl 0973.35012
[36] A. A. Kilbas, M. Saigo, and J. J. Trujillo, “On the generalized Wright function,” Fractional Calculus & Applied Analysis, vol. 5, no. 4, pp. 437-460, 2002. · Zbl 1027.33015
[37] V. Kiryakova, Generalized Fractional Calculus and Applications, vol. 301 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow, UK, 1994. · Zbl 0882.26003
[38] F. Mainardi, “Fractional calculus: some basic problems in continuum and statistical mechanics,” in Fractals and Fractional Calculus in Continuum Mechanics (Udine, 1996), A. Carpinteri and F. Mainardi, Eds., vol. 378 of CISM Courses and Lectures, pp. 291-348, Springer, Vienna, Austria, 1997. · Zbl 0917.73004
[39] B. Stanković, “On the function of E. M. Wright,” Publications de l/Institut Mathèmatique, vol. 10 (24), pp. 113-124, 1970. · Zbl 0204.08404
[40] R. Wong and Y.-Q. Zhao, “Smoothing of Stokes/s discontinuity for the generalized Bessel function,” Proceedings of the Royal Society A, vol. 455, no. 1984, pp. 1381-1400, 1999. · Zbl 0974.41021
[41] R. Wong and Y.-Q. Zhao, “Smoothing of Stokes/s discontinuity for the generalized Bessel function. II,” Proceedings of the Royal Society A, vol. 455, no. 1988, pp. 3065-3084, 1999. · Zbl 0974.41021
[42] F. Mainardi, “On the initial value problem for the fractional diffusion-wave equation,” in Waves and Stability in Continuous Media (Bologna, 1993), S. Rionero and T. Ruggeri, Eds., vol. 23 of Series on Advances in Mathematics for Applied Sciences, pp. 246-251, World Scientific, River Edge, NJ, USA, 1994.
[43] F. Mainardi and M. Tomirotti, “On a special function arising in the time fractional diffusion-wave equation,” in Transform Methods and Special Functions, Sofia 1994, P. Rusev, I. Dimovski, and V. Kiryakova, Eds., pp. 171-183, Science Culture Technology, Singapore, 1995. · Zbl 0921.33010
[44] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, Singapore, 1987. · Zbl 0417.34001
[45] A. Hanyga, “Multi-dimensional solutions of space-time-fractional diffusion equations,” Proceedings of the Royal Society A, vol. 458, no. 2018, pp. 429-450, 2002. · Zbl 0999.60035
[46] R. Balescu, “V-Langevin equations, continuous time random walks and fractional diffusion,” Chaos, Solitons & Fractals, vol. 34, no. 1, pp. 62-80, 2007. · Zbl 1142.82356
[47] G. Germano, M. Politi, E. Scalas, and R. L. Schilling, “Stochastic calculus for uncoupled continuous-time random walks,” Physical Review E, vol. 79, no. 6, Article ID 066102, 12 pages, 2009.
[48] V. Kiryakova, “The multi-index Mittag-Leffler functions as an important class of special functions of fractional calculus,” Computers and Mathematics with Applications. In press. · Zbl 1189.33034
[49] V. Kiryakova, “The special functions of fractional calculus as generalized fractional calculus operators of some basic functions,” Computers and Mathematics with Applications, vol. 59, no. 3, pp. 1128-1141, 2010. · Zbl 1189.26007
[50] F. Mainardi, R. Gorenflo, and A. Vivoli, “Renewal processes of Mittag-Leffler and Wright type,” Fractional Calculus & Applied Analysis, vol. 8, no. 1, pp. 7-38, 2005. · Zbl 1126.60070
[51] F. Mainardi and G. Pagnini, “The Wright functions as solutions of the time-fractional diffusion equation,” Applied Mathematics and Computation, vol. 141, no. 1, pp. 51-62, 2003. · Zbl 1053.35008
[52] F. Mainardi, “The fundamental solutions for the fractional diffusion-wave equation,” Applied Mathematics Letters, vol. 9, no. 6, pp. 23-28, 1996. · Zbl 0879.35036
[53] F. Mainardi, Yu. Luchko, and G. Pagnini, “The fundamental solution of the space-time fractional diffusion equation,” Fractional Calculus & Applied Analysis, vol. 4, no. 2, pp. 153-192, 2001. · Zbl 1054.35156
[54] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley & Sons, New York, NY, USA, 1st edition, 1966. · Zbl 0138.10207
[55] W. Feller, An Introduction to Probability Theory and Its Applications. Vol. II, John Wiley & Sons, New York, NY, USA, 2nd edition, 1971. · Zbl 0219.60003
[56] P. Humbert, “Nouvelles correspondances symboliques,” Bulletin des Sciences Mathématiques, vol. 69, pp. 121-129, 1945. · Zbl 0060.25112
[57] H. Pollard, “The representation of e - x\lambda as a Laplace integral,” Bulletin of the American Mathematical Society, vol. 52, pp. 908-910, 1946. · Zbl 0060.25007
[58] J. Mikusiński, “On the function whose Laplace-transform is e - s\alpha ,” Studia Mathematica, vol. 18, pp. 191-198, 1959. · Zbl 0087.10501
[59] P. W. Buchen and F. Mainardi, “Asymptotic expansions for transient viscoelastic waves,” Journal de Mécanique, vol. 14, no. 4, pp. 597-608, 1975. · Zbl 0351.73033
[60] F. Mainardi and R. Gorenflo, “On Mittag-Leffler-type functions in fractional evolution processes,” Journal of Computational and Applied Mathematics, vol. 118, no. 1-2, pp. 283-299, 2000. · Zbl 0970.45005
[61] B. N. N. Achar, J. W. Hanneken, and T. Clarke, “Damping characteristics of a fractional oscillator,” Physica A, vol. 339, no. 3-4, pp. 311-319, 2004.
[62] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, Imperial College Press, London, UK, 2010. · Zbl 1210.26004
[63] A. Freed, K. Diethelm, and Yu. Luchko, “Fractional-order viscoelasticity (FOV): constitutive development using the fractional calculus,” First Annual Report NASA/TM-2002-211914, Gleen Research Center, 2002.
[64] R. Gorenflo, J. Loutchko, and Yu. Luchko, “Computation of the Mittag-Leffler function E\alpha ,\beta (z) and its derivative,” Fractional Calculus & Applied Analysis, vol. 5, no. 4, pp. 491-518, 2002. · Zbl 1027.33016
[65] I. Podlubny, “Mittag-Leffler function,” The MATLAB routine, http://www.mathworks.com/matlabcentral/fileexchange.
[66] H. J. Seybold and R. Hilfer, “Numerical results for the generalized Mittag-Leffler function,” Fractional Calculus & Applied Analysis, vol. 8, no. 2, pp. 127-139, 2005. · Zbl 1123.33018
[67] G. Doetsch, Introduction to the Theory and Application of the Laplace Transformation, Springer, New York, NY, USA, 1974. · Zbl 0278.44001
[68] F. Mainardi, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena,” Chaos, Solitons & Fractals, vol. 7, no. 9, pp. 1461-1477, 1996. · Zbl 1080.26505
[69] F. Mainardi and M. Tomirotti, “Seismic pulse propagation with constant Q and stable probability distributions,” Annali di Geofisica, vol. 40, no. 5, pp. 1311-1328, 1997.
[70] Yu. Luchko, “Algorithms for evaluation of the Wright function for the real arguments/ values,” Fractional Calculus & Applied Analysis, vol. 11, no. 1, pp. 57-75, 2008. · Zbl 1145.33005
[71] F. Mainardi, G. Pagnini, and R. Gorenflo, “Mellin transform and subordination laws in fractional diffusion processes,” Fractional Calculus & Applied Analysis, vol. 6, no. 4, pp. 441-459, 2003. · Zbl 1083.60032
[72] I. M. Sokolov and J. Klafter, “From diffusion to anomalous diffusion: a century after Einstein/s Brownian motion,” Chaos, vol. 15, no. 2, Article ID 026103, 7 pages, 2005. · Zbl 1080.82022
[73] F. Mainardi, G. Pagnini, and R. Gorenflo, “Some aspects of fractional diffusion equations of single and distributed order,” Applied Mathematics and Computation, vol. 187, no. 1, pp. 295-305, 2007. · Zbl 1122.26004
[74] A. I. Saichev and G. M. Zaslavsky, “Fractional kinetic equations: solutions and applications,” Chaos, vol. 7, no. 4, pp. 753-764, 1997. · Zbl 0933.37029
[75] W. R. Schneider and W. Wyss, “Fractional diffusion and wave equations,” Journal of Mathematical Physics, vol. 30, no. 1, pp. 134-144, 1989. · Zbl 0692.45004
[76] I. M. Gel/fand and G. E. Shilov, Generalized Functions, Volume I, Academic Press, New York, NY, USA, 1964.
[77] R. Gorenflo and F. Mainardi, “Continuous time random walk, Mittag-Leffler waiting time and fractional diffusion: mathematical aspects,” in Anomalous Transport: Foundations and Applications, R. Klages, G. Radons, and I. M. Sokolov, Eds., chapter 4, pp. 93-127, Wiley-VCH, Weinheim, Germany, 2008.
[78] M. M. Meerschaert and H.-P. Scheffler, “Limit theorems for continuous-time random walks with infinite mean waiting times,” Journal of Applied Probability, vol. 41, no. 3, pp. 623-638, 2004. · Zbl 1065.60042
[79] R. Gorenflo, “Mittag-Leffler waiting time, power laws, rarefaction, continuous time random walk, diffusion limit,” in Workshop on Fractional Calculus and Statistical Distributions, Centre for Mathematical Sciences, Pala Campus, Pala-Kerala, India, November 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.