×

zbMATH — the first resource for mathematics

The zeros of the Weierstrass \(\wp\)-function and hypergeometric series. (English) Zbl 1222.33017
Summary: We express the zeros of the Weierstrass \(\wp\)-function in terms of generalized hypergeometric functions. As an application of our main result we prove the transcendence of two specific hypergeometric functions at algebraic arguments in the unit disc. We also give a Saalschützian \(_{4}F_{3}\)-evaluation.

MSC:
33E05 Elliptic functions and integrals
11J81 Transcendence (general theory)
11J91 Transcendence theory of other special functions
33C20 Generalized hypergeometric series, \({}_pF_q\)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Archinard N. (2003). Exceptional sets of hypergeometric series. J. Number Theory 101: 244–269 · Zbl 1125.11043 · doi:10.1016/S0022-314X(03)00042-8
[2] Babister A.W. (1967). Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations. Macmillan, New York · Zbl 0158.06002
[3] Bailey W.N. (1964). Generalized hypergeometric series. Cambridge Tracts in Mathematics and Mathematical Physics. Stechert-Hafner Inc., New York · Zbl 0011.02303
[4] Baker A. (1990). Transcendental Number Theory, 2nd edn. Cambridge University Press, Cambridge · Zbl 0715.11032
[5] Beukers F. and Wolfart J. (1988). Algebraic Values of Hypergeometric Functions New Advances in Transcendence Theory (Durham, 1986). Cambridge University Press, Cambridge, 68–81 · Zbl 0656.10030
[6] Eichler M. and Zagier D. (1981). On the zeros of the Weierstrass \({\wp}\) -function. Math. Ann. 258: 399–407 · Zbl 0491.33004 · doi:10.1007/BF01453974
[7] Eichler M. and Zagier D. (1985). The theory of Jacobi forms. Progress in Mathematics, vol 55. Birkhuser Boston Inc., Boston · Zbl 0554.10018
[8] Evans R.J. and Stanton D. (1984). Asymptotic formulas for zero-balanced hypergeometric series. SIAM J. Math. Anal. 15(5): 1010–1020 · Zbl 0547.33001 · doi:10.1137/0515078
[9] Fricke R. (1916). Die Elliptischen Funktionen und ihre Anwendungen I, II. B.G. Teubner, Leipzig · JFM 46.0599.02
[10] Nesterenko Yu. V. (2002). On the algebraic independence of numbers. A Panorama of Number Theory or the View from Baker’s garden (Zürich, 1999). Cambridge University Press, Cambridge, 148–167
[11] Ramanujan, S.: Collected papers, (AMS Chelsea Publishing 2000) pp. 136–162
[12] Ramanujan S. (1957). Notebooks, vol. 2. Tata Institute of Fundamental Research, Bombay · Zbl 0138.24201
[13] Schneider T. (1937). Arithmetische Untersuchungen elliptischer Integrale. Math. Ann. 113: 1–13 · JFM 62.0186.02 · doi:10.1007/BF01571618
[14] Schwarz, H.A.: Formeln und Lehrsätze zum Gebrauche der elliptischen Functionen. Nach Vorlesungen und Aufzeichnungen des Herrn Professor K. Weierstrass. Göttingen. Dieterich. Bogen 11 u. 12, S. 81–96 (1885)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.