zbMATH — the first resource for mathematics

The hyper-Wiener index of the generalized hierarchical product of graphs. (English) Zbl 1222.05222
Summary: The hyper Wiener index of the connected graph \(G\) is \(WW(G) = \frac 12 \sum _{\{u, v\}\subseteq V(G)}(d(u, v) + d(u, v)^2)\), where \(d(u,v)\) is the distance between the vertices \(u\) and \(v\) of \(G\). In this paper we compute the hyper-Wiener index of the generalized hierarchical product of two graphs and give some applications of this operation.

05C12 Distance in graphs
05C76 Graph operations (line graphs, products, etc.)
Full Text: DOI
[1] Althöfer, I., Average distance in undirected graphs and the removal of vertices, J. combin. theory ser. B, 48, 140-142, (1990) · Zbl 0688.05045
[2] Barriére, L.; Comellas, F.; Dalfó, C.; Fiol, M.A., The hierarchical product of graphs, Discrete appl. math., 157, 36-48, (2009) · Zbl 1200.05196
[3] Barriére, L.; Dalfó, C.; Fiol, M.A.; Mitjana, M., The generalized hierarchical product of graphs, Discrete math., 309, 3871-3881, (2009) · Zbl 1210.05120
[4] Cash, G.G., Relationship between the hosoya polynomial and the hyper-Wiener index, Appl. math. lett., 15, 893-895, (2002) · Zbl 1009.05127
[5] Dankelmann, P., Average distance and independence numbers, Discrete appl. math., 51, 75-83, (1994) · Zbl 0803.05020
[6] Dobrynin, A.A.; Entringer, R.; Gutman, I., Wiener index of trees: theory and applications, Acta appl. math., 66, 211-249, (2001) · Zbl 0982.05044
[7] Eliasi, M.; Taeri, B., Four new sums of graphs and their Wiener indices, Discrete appl. math., 157, 794-803, (2009) · Zbl 1172.05318
[8] Entringer, R.C.; Jackson, D.E.; Snyder, D.A., Distance in graphs, Czechoslovak math. J., 26, 283-296, (1976) · Zbl 0329.05112
[9] Gutman, I., Relation between hyper-Wiener and Wiener index, Chem. phys. lett., 364, 352-356, (2002)
[10] Gutman, I.; Chen, J.C.; Yeh, Yeong-Nan, On the sum of all distances in graphs, Tamkang J. math., 25, 83-86, (1993) · Zbl 0808.05048
[11] Gutman, I.; Lee, S.L.; Luo, Y.L.; Yeh, Yeong-Nan, Recent results in the theory of the Wiener number, Indian J. chem., 32A, 651-661, (1993)
[12] Gutman, I.; Polansky, O.E., Mathematical concepts in organic chemistry, (1986), Springer Berlin · Zbl 0657.92024
[13] Khalifeh, M.H.; Yousefi-Azari, H.; Ashrafi, A.R., The hyper-Wiener index of graph operations, Comput. math. appl., 56, 1402-1407, (2008) · Zbl 1155.05316
[14] Klavzar, S.; Zigert, P.; Gutman, I., An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, Comput. chem., 24, 229-233, (2000) · Zbl 1034.92040
[15] Klein, D.J.; Lukovits, I.; Gutman, I., On the definition of the hyper-Wiener index for cycle-containing structures, J. chem. inf. comput. sci., 35, 50-52, (1995)
[16] Randić, M., Novel molecular descriptor for structure-property studies, Chem. phys. lett., 211, 478-483, (1993)
[17] Stevanović, D., Hosoya polynomial of composite graphs, Discrete math., 235, 237-244, (2001) · Zbl 0973.05026
[18] Wiener, H., Structural determination of the paraffin boiling points, J. amer. chem. soc., 69, 17-20, (1947)
[19] Yan, W.; Yang, B.; Yeh, Y., The behavior of Wiener indices and polynomials of graphs under five graph decorations, Appl. math. lett., 20, 290-295, (2007) · Zbl 1118.05026
[20] Yeh, Y.N.; Gutman, I., On the sum of all distances in composite graphs, Discrete math., 135, 359-365, (1994) · Zbl 0814.05033
[21] Yousefi-Azari, H.; Manoochehrian, B.; Ashrafi, A.R., The PI index of product graphs, Appl. math. lett., 21, 624-627, (2008) · Zbl 1149.05015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.