Olkiewicz, R.; Ẓaba, M. Dynamics of a degenerate parametric oscillator in a squeezed reservoir. (English) Zbl 1221.81106 Phys. Lett., A 372, No. 30, 4985-4989 (2008). Summary: Dynamics of a cavity mode which, in addition to interacting to an outside field with squeezed fluctuations, is simultaneously submitted to linear and parametric amplification processes is discussed in the Markovian approximation. The master equation for a density matrix of the cavity field is solved analytically in the Heisenberg picture. Long time asymptotic properties of the cavity mode are studied in the whole range of the evolution parameters and the corresponding decoherence effects are reported. It is also shown that in an appropriate regime of the evolution parameters there exists a unique steady state such that all initial density matrices evolve towards it. This allows engineering cavity states with desired properties. Cited in 2 Documents MSC: 81R30 Coherent states 81V80 Quantum optics 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics 47D06 One-parameter semigroups and linear evolution equations Keywords:quantum dynamical semigroups; quantum optics; squeezed states; equilibrium states PDF BibTeX XML Cite \textit{R. Olkiewicz} and \textit{M. Ẓaba}, Phys. Lett., A 372, No. 30, 4985--4989 (2008; Zbl 1221.81106) Full Text: DOI References: [1] Milburn, G.; Walls, D.F., Opt. commun., 39, 401, (1981) [2] Scully, M.O.; Zubairy, S., Quantum optics, (1997), Cambridge Univ. Press Cambridge, England [3] () [4] Takahashi, H., Adv. commun. syst., 1, 227, (1965) [5] Xiao, M.; Wu, L.-A.; Kimble, H.J., Phys. rev. lett., 59, 278, (1987) [6] Fabre, C.; Fouet, J.B.; Maitre, A., Opt. lett., 25, 76, (2000) [7] McKenzie, K.; Shaddock, D.A.; McClelland, D.E.; Buchler, B.C.; Lam, P.K., Phys. rev. lett., 88, 231102, (2002) [8] Alicki, R., Phys. rev. A, 40, 4077, (1989) [9] Anwar, J.; Zubairy, M.S., Phys. rev. A, 45, 1804, (1992) [10] Walls, D.F.; Milburn, G.J., Quantum optics, (1994), Springer Berlin · Zbl 1138.81586 [11] Puri, Ravinder R., Mathematical methods in quantum optics, (2001), Springer Berlin · Zbl 1041.81108 [12] Anwar, J., Phys. rev. A, 72, 063804, (2005) [13] Jakob, M.; Abranyos, Y.; Bergou, J.A., Phys. rev. A, 64, 062102, (2001) [14] Qin, T.; Zhao, M.; Zhang, Y., Phys. lett. A, 355, 308, (2006) [15] Alicki, R.; Lendi, K., Quantum dynamical semigroups and applications, (1987), Springer Berlin · Zbl 0652.46055 [16] Blanchard, Ph.; Hellmich, M.; Lugiewicz, P.; Olkiewicz, R., J. math. phys., 48, 012106, (2007) [17] Olkiewicz, R.; Żaba, M., Phys. lett. A, 372, 3176, (2008) · Zbl 1221.81106 [18] Reid, M.D.; Yurke, B., Phys. rev. A, 46, 4131, (1992) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.