×

zbMATH — the first resource for mathematics

Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. (English) Zbl 1221.76104
Summary: The linear response to stochastic and optimal harmonic forcing of small coherent perturbations to the turbulent channel mean flow is computed for Reynolds numbers ranging from \(Re_{\tau }\) = 500 to 20000. Even though the turbulent mean flow is linearly stable, it is nevertheless able to sustain large amplifications by the forcing. The most amplified structures consist of streamwise-elongated streaks that are optimally forced by streamwise-elongated vortices. For streamwise-elongated structures, the mean energy amplification of the stochastic forcing is found to be, to a first approximation, inversely proportional to the forced spanwise wavenumber while it is inversely proportional to its square for optimal harmonic forcing in an intermediate spanwise wavenumber range. This scaling can be explicitly derived from the linearized equations under the assumptions of geometric similarity of the coherent perturbations and of logarithmic base flow. Deviations from this approximate power-law regime are apparent in the pre-multiplied energy amplification curves that reveal a strong influence of two different peaks. The dominant peak scales in outer units with the most amplified spanwise wavelength of \(\lambda_{z} \approx 3.5h\), while the secondary peak scales in wall units with the most amplified \(\lambda_{z}^{+} \approx 80\). The associated optimal perturbations are almost independent of the Reynolds number when, respectively, scaled in outer and inner units. In the intermediate wavenumber range, the optimal perturbations are approximatively geometrically similar. Furthermore, the shape of the optimal perturbations issued from the initial value, the harmonic forcing and the stochastic forcing analyses are almost indistinguishable. The optimal streaks corresponding to the large-scale peak strongly penetrate into the inner layer, where their amplitude is proportional to the mean-flow profile. At the wavenumbers corresponding to the large-scale peak, the optimal amplifications of harmonic forcing are at least two orders of magnitude larger than the amplifications of the variance of stochastic forcing and both increase with the Reynolds number. This confirms the potential of the artificial forcing of optimal large-scale streaks for the flow control of wall-bounded turbulent flows.

MSC:
76F55 Statistical turbulence modeling
76F40 Turbulent boundary layers
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1063/1.3068760 · Zbl 1183.76425 · doi:10.1063/1.3068760
[2] DOI: 10.1103/PhysRevLett.96.064501 · doi:10.1103/PhysRevLett.96.064501
[3] DOI: 10.1063/1.1897377 · Zbl 1187.76163 · doi:10.1063/1.1897377
[4] DOI: 10.1080/14685248.2010.494607 · doi:10.1080/14685248.2010.494607
[5] DOI: 10.1063/1.1773493 · Zbl 1187.76162 · doi:10.1063/1.1773493
[6] DOI: 10.1017/S0022112082001311 · Zbl 0517.76057 · doi:10.1017/S0022112082001311
[7] DOI: 10.1007/s001620050091 · Zbl 0926.76057 · doi:10.1007/s001620050091
[8] DOI: 10.1017/S0022112069002072 · doi:10.1017/S0022112069002072
[9] DOI: 10.1175/1520-0469(1996)053&lt;2025:GSTPIA&gt;2.0.CO;2 · doi:10.1175/1520-0469(1996)053<2025:GSTPIA>2.0.CO;2
[10] Moffatt, Proceedings URSI-IUGG International Colloquium on Atmospheric Turbulence and Radio Wave Propagation pp 139– (1967)
[11] DOI: 10.1103/PhysRevLett.72.1188 · doi:10.1103/PhysRevLett.72.1188
[12] DOI: 10.1063/1.1344894 · Zbl 1184.76364 · doi:10.1063/1.1344894
[13] DOI: 10.1063/1.858894 · Zbl 0809.76078 · doi:10.1063/1.858894
[14] McKeon, Proceedings of the Summer Program pp 399– (2008)
[15] DOI: 10.1063/1.858574 · Zbl 0779.76030 · doi:10.1063/1.858574
[16] DOI: 10.1017/S0022112009006946 · Zbl 1181.76008 · doi:10.1017/S0022112009006946
[17] DOI: 10.1063/1.861156 · Zbl 0308.76030 · doi:10.1063/1.861156
[18] DOI: 10.1017/S0022112056000342 · Zbl 0073.20803 · doi:10.1017/S0022112056000342
[19] DOI: 10.1017/S0022112008004370 · Zbl 1156.76400 · doi:10.1017/S0022112008004370
[20] DOI: 10.1017/S0022112090002105 · Zbl 0695.76027 · doi:10.1017/S0022112090002105
[21] DOI: 10.1017/S0022112080000122 · Zbl 0428.76049 · doi:10.1017/S0022112080000122
[22] Zhou, Robust and Optimal Control (1996)
[23] DOI: 10.1017/S0022112096007537 · Zbl 0875.76160 · doi:10.1017/S0022112096007537
[24] DOI: 10.1017/S0022112067001740 · doi:10.1017/S0022112067001740
[25] DOI: 10.1016/j.euromechflu.2004.05.001 · Zbl 1060.76040 · doi:10.1016/j.euromechflu.2004.05.001
[26] Willis, Bull. Am. Phys. Soc. 54 pp 227– (2009)
[27] DOI: 10.1063/1.2844476 · Zbl 1182.76384 · doi:10.1063/1.2844476
[28] DOI: 10.1063/1.1493791 · Zbl 1185.76090 · doi:10.1063/1.1493791
[29] DOI: 10.1145/365723.365727 · doi:10.1145/365723.365727
[30] DOI: 10.1017/S0022112005005641 · Zbl 1137.76305 · doi:10.1017/S0022112005005641
[31] Waleffe, Stud. Appl. Math. 95 pp 319– (1995) · Zbl 0838.76026 · doi:10.1002/sapm1995953319
[32] DOI: 10.1063/1.858386 · doi:10.1063/1.858386
[33] DOI: 10.1063/1.869889 · Zbl 1147.76430 · doi:10.1063/1.869889
[34] DOI: 10.1126/science.261.5121.578 · Zbl 1226.76013 · doi:10.1126/science.261.5121.578
[35] DOI: 10.1063/1.1398044 · Zbl 1184.76042 · doi:10.1063/1.1398044
[36] DOI: 10.1017/S0022112005004295 · Zbl 1074.76016 · doi:10.1017/S0022112005004295
[37] Townsend, The Structure of Turbulent Shear Flow (1976) · Zbl 0325.76063
[38] DOI: 10.1063/1.869908 · Zbl 1147.76308 · doi:10.1063/1.869908
[39] DOI: 10.1017/S0022112099005066 · Zbl 0948.76025 · doi:10.1017/S0022112099005066
[40] DOI: 10.1017/S0022112005006397 · Zbl 1085.76519 · doi:10.1017/S0022112005006397
[41] DOI: 10.1017/S002211200300733X · Zbl 1059.76031 · doi:10.1017/S002211200300733X
[42] DOI: 10.1017/S0022112091002033 · Zbl 0721.76040 · doi:10.1017/S0022112091002033
[43] DOI: 10.1017/S0022112003005251 · Zbl 1063.76514 · doi:10.1017/S0022112003005251
[44] DOI: 10.1017/S0022112006000607 · Zbl 1095.76021 · doi:10.1017/S0022112006000607
[45] Jiménez, Rev. R. Acad. Cien. Ser. A Mat. 101 pp 187– (2007)
[46] DOI: 10.1017/S0022112083000634 · doi:10.1017/S0022112083000634
[47] DOI: 10.1063/1.1570830 · Zbl 1186.76136 · doi:10.1063/1.1570830
[48] Jiménez, CTR Annual Research Briefs pp 943– (1998)
[49] DOI: 10.1017/S002211200100667X · Zbl 1141.76408 · doi:10.1017/S002211200100667X
[50] DOI: 10.1063/1.869789 · Zbl 1152.76375 · doi:10.1063/1.869789
[51] DOI: 10.1017/S0022112002002574 · Zbl 1024.76509 · doi:10.1017/S0022112002002574
[52] DOI: 10.1017/S0022112009992151 · Zbl 1189.76191 · doi:10.1017/S0022112009992151
[53] Schmid, Stability and Transition in Shear Flows (2001) · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[54] DOI: 10.1098/rsta.2006.1942 · Zbl 1152.76421 · doi:10.1098/rsta.2006.1942
[55] DOI: 10.1017/S0022112094002739 · Zbl 0888.76024 · doi:10.1017/S0022112094002739
[56] DOI: 10.1017/S0022112006003946 · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[57] DOI: 10.1146/annurev.fluid.38.050304.092139 · doi:10.1146/annurev.fluid.38.050304.092139
[58] DOI: 10.1016/S0997-7546(00)00129-1 · Zbl 1005.76035 · doi:10.1016/S0997-7546(00)00129-1
[59] DOI: 10.1146/annurev.fl.23.010191.003125 · doi:10.1146/annurev.fl.23.010191.003125
[60] DOI: 10.1063/1.2162185 · doi:10.1063/1.2162185
[61] DOI: 10.1017/S0022112067000308 · doi:10.1017/S0022112067000308
[62] DOI: 10.1017/S0022112095000978 · Zbl 0867.76032 · doi:10.1017/S0022112095000978
[63] DOI: 10.1017/S0022112072000679 · doi:10.1017/S0022112072000679
[64] DOI: 10.1017/S002211209100174X · Zbl 0717.76044 · doi:10.1017/S002211209100174X
[65] DOI: 10.1137/0153002 · Zbl 0778.34060 · doi:10.1137/0153002
[66] DOI: 10.1017/S0022112006008871 · Zbl 1156.76316 · doi:10.1017/S0022112006008871
[67] DOI: 10.1017/S0022112093003738 · Zbl 0789.76026 · doi:10.1017/S0022112093003738
[68] DOI: 10.1017/S0022112000001713 · Zbl 0958.76509 · doi:10.1017/S0022112000001713
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.