×

zbMATH — the first resource for mathematics

The application of homotopy analysis method to solve nonlinear differential equation governing Jeffery-Hamel flow. (English) Zbl 1221.76056
Summary: The Jeffery–Hamel flow is studied and its nonlinear ordinary differential equation is solved through the homotopy analysis method (HAM). The obtained solution in comparison with the numerical ones represents a remarkable accuracy. The results also indicate that HAM can provide us with a convenient way to control and adjust the convergence region.

MSC:
76D05 Navier-Stokes equations for incompressible viscous fluids
76M25 Other numerical methods (fluid mechanics) (MSC2010)
Software:
Matlab
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jeffery, G.B., The two-dimensional steady motion of a viscous fluid, Philos mag, 6, 455-465, (1915) · JFM 45.1088.01
[2] Hamel, G., Spiralförmige bewgungen Zäher flüssigkeiten, Jahresbericht der deutschen math vereinigung, 25, 34-60, (1916) · JFM 46.1255.01
[3] Rosenhead, L., The steady two-dimensional radial flow of viscous fluid between two inclined plane walls, Proc royal soc A, 175, 963, 436-467, (1940) · JFM 66.1385.02
[4] Batchelor, K., An introduction to fluid dynamics, (1967), Cambridge University Press · Zbl 0152.44402
[5] Reza M. Sadri, Channel entrance flow, PhD thesis, Department of Mechanical Engineering, the University of Western Ontario, 1997.
[6] SobeyI, J.; Drazin, P.G., Bifurcations of two-dimensional channel flows, J fluid mech, 171, 263-287, (1986) · Zbl 0609.76050
[7] Hamadiche, M.; Scott, J.; Jeandel, D., Temporal stability of jeffery – hamel flow, J fluid mech, 268, 71-88, (1994) · Zbl 0809.76039
[8] Fraenkel, L.E., Laminar flow in symmetrical channels with slightly curved walls. I: on the jeffery – hamel solutions for flow between plane walls, Proc R soc lond A, 267, 119-138, (1962) · Zbl 0104.42403
[9] Makinde, O.D.; Mhone, P.Y., Hermite – pade’ approximation approach to MHD jeffery – hamel flows, Appl math comput, 181, 966-972, (2006) · Zbl 1102.76049
[10] Hermann, Schlichting, Boundary-layer theory, (2000), MCGraw-Hill Press New York · Zbl 0096.20105
[11] Rathy, R.K., An introduction to fluid dynamics, (1976), Oxford and IBH Pl New Delhi
[12] McAlpine, A.; Drazin, P.G., On the spatio-temporal development of small perturbations of jeffery – hamel flows, Fluid dyn res, 22, 123-138, (1998) · Zbl 1051.76554
[13] Liao, SJ. The proposed homotopy analysis technique for the solution of nonlinear problems, PhD thesis, Shanghai Jiao Tong University, 1992.
[14] Liao, S.J., Beyond perturbation: introduction to homotopy analysis method, (2003), Chapman and Hall/CRC Press Boca Raton
[15] Abbasbandy, S., The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys lett A, 360, 109-113, (2006) · Zbl 1236.80010
[16] Hayat, T.; Sajid, M., On analytic solution for thin film flow of a forth grade fluid down a vertical cylinder, Phys lett A, 361, 316-322, (2007) · Zbl 1170.76307
[17] Sajid M, Hayat T, Asghar S. Comparison between the HAM and HPM solutions of tin film flows of non-Newtonian fluid on a moving belt, Nonlinear Dyn, in press. · Zbl 1181.76031
[18] Hayat, T.; Khan, M.; Ayub, M., On the explicit analytical solution of an Oldroyd 6-constant fluid, Int J eng sci, 42, 123-135, (2004) · Zbl 1211.76009
[19] Hayat, T.; Khan, M.; Asghar, S., Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid, Acta mech, 168, 213-232, (2004) · Zbl 1063.76108
[20] Hayat, T.; Khan, M.; Asghar, S., Magnetohydrodynamic flow of an Oldroyd 6-constant fluid, Appl math comput, 155, 417-425, (2004) · Zbl 1126.76388
[21] Ayub, M.; Rasheed, A.; Hayat, T., Exact flow of a third grade fluid past a porous plate using homotopy analysis method, Int J eng sci, 41, 2091-2103, (2003) · Zbl 1211.76076
[22] Hayat, T.; Khan, M.; Ayub, M., Couette and Poiseuille flows of an Oldroyd 6-constant fluid with magnetic field, J math anal appl, 298, 225-244, (2004) · Zbl 1067.35074
[23] Hayat, T.; Abbas, Z.; Sajid, M., Series solution for the upper-convected Maxwell fluid over a porous stretching plate, Phys lett A, 358, 396-403, (2006) · Zbl 1142.76511
[24] Sajid, M.; Hayat, T.; Asghar, S., On the analytic solution of the steady flow of a fourth grade fluid, Phys lett A, 355, 18-26, (2006)
[25] Hayat, T.; Masood, Khan; Sajid, M.; Ayub, M., Steady flow of an Oldroyd 8-constant fluid between coaxial cylinders in a porous medium, J porous media, 9, 709-722, (2006)
[26] Hayat, T.; Abbas, Z.; Sajid, M.; Asghar, S., The influence of radiation on MHD flow of second grade fluid, Int J heat mass transfer, 50, 931-941, (2007) · Zbl 1124.80325
[27] Sajid, M.; Hayat, T.; Asghar, S., Non-similar analytic solution for MHD flow and heat transfer in a third-order fluid over a stretching sheet, Int J heat mass transfer, 50, 1723-1736, (2007) · Zbl 1140.76042
[28] Sajid, M.; Hayat, T.; Asghar, S., Non-similar solution for the axisymmetric flow of a third-grade fluid over a radially stretching sheet, Acta mech, 189, 193-205, (2007) · Zbl 1117.76006
[29] Abbas, Z.; Sajid, M.; Hayat, T., MHD boundary-layer flow of an upper-convected Maxwell fluid in a porous channel, Theoret comput fluid dyn, 20, 229-238, (2006) · Zbl 1109.76065
[30] Liao, S.J., On the homotopy analysis method for nonlinear problems, Appl math comput, 147, 499-513, (2004) · Zbl 1086.35005
[31] Hang, Xu; Liao, S.J., Dual solutions of boundary layer flow over an upstream moving plate, J commun nonlin sci numer simul, 13, 350-358, (2008) · Zbl 1131.35066
[32] Cheng, Yang; Liao, S.J., On the explicit, purely analytic solution of von ka’rma’n swirling viscous flow, J commun nonlin sci numer simul, 11, 83-93, (2006) · Zbl 1075.35059
[33] Chun, Wang; Ioan, Pop, Analysis of the flow of a power-law fluid film on an unsteady stretching surface by means of homotopy analysis method, J non-Newtonian fluid mech, 138, 161-172, (2006) · Zbl 1195.76132
[34] Liao, S.J.; Campo, A., Analytic solutions of the temperature distribution in Blasius viscous flow problems, J fluid mech, 453, 411-425, (2002) · Zbl 1007.76014
[35] Liao, S.J., On the analytic solution of magnetohydrodynamic flows of non-Newtonian fluid over a stretching sheet, J fluid mech, 488, 189-212, (2003) · Zbl 1063.76671
[36] Liao, S.J., An analytic approximate technique for free oscillations of positively damped systems with algebraically decaying amplitude, Int J non-linear mech, 38, 1173-1183, (2003) · Zbl 1348.74225
[37] Liao, S.J.; Pop, I., Explicit analytic solution for similarity boundary layer equations, Int J heat mass transfer, 47-75, (2004) · Zbl 1045.76008
[38] Liao, S.J., An analytical approximation of the drag coefficient for the viscous flow past a sphere, Int J non-linear mech, 37, 1-18, (2002) · Zbl 1116.76335
[39] Liao, S.J., An explicit analytic solution to the thomas – fermi equation, Appl math comput, 144, 495-506, (2003) · Zbl 1034.34005
[40] Liao, S.J.; Cheung, K.F., Homotopy analysis of nonlinear progressive waves in deep water, J eng math, 45, 105-116, (2003) · Zbl 1112.76316
[41] Liao, S.J.; Chwang, A.T., Application of homotopy analysis method in non-linear oscillations, Trans ASME J appl mech, 65, 914-922, (1998)
[42] MATLAB^{®} 6-The Language of Technical Computing, 2006.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.