×

zbMATH — the first resource for mathematics

Multi-scale B-spline method for 2-D elastic problems. (English) Zbl 1221.74082
Summary: Quadratic B-spline functions are used for solution of 2-D elastic problems. Because B-spline functions are directly used as basis function, there is no need to use meshes and nodes in function approximation. In order to improve the computational efficiency, different scales are used for sub-domains of entire problem domain in function approximation. The modified variational form and Lagrange multipliers method are used for coupling of different scale in function approximation. Compared with meshless methods and other wavelet based methods, this multi-scale B-spline-based method is simple and easy to work with for numerical analysis. Furthermore, the computational efficiency of the multi-scale method is much higher than that of single scale approach. The numerical examples of 2-D elastic problems indicate that the present method is effective and stable for solving complicated problems.

MSC:
74S25 Spectral and related methods applied to problems in solid mechanics
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
65T60 Numerical methods for wavelets
74B05 Classical linear elasticity
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ko, J.; Kurdila, A.J.; Pilant, M.S., A class of finite element methods based on orthonormal compactly supported wavelets, Comput. mech., 16, 235-244, (1995) · Zbl 0830.65084
[2] Ma, J.; Xue, J.; Yang, S.; He, Z., A study of the construction and application of a Daubechies wavelet-based beam element, Finite elem. anal. des., 39, 965-975, (2003)
[3] Bertoluzza, S.; Naldi, G., A wavelet collocation method for the numerical solution of partial differential equations, Appl. comput. harmon. anal., 3, 1-9, (1996) · Zbl 0853.65122
[4] Zhou, Y.H.; Zhou, J., A modified wavelet approximation for multi-resolution AWCM in simulating nonlinear vibration of MDOF systems, Comput. methods appl. mech. eng., 197, 1466-1478, (2008) · Zbl 1194.70006
[5] Amaratunga, K.; Williams, J.R., Wavelet-Galerkin solutions for one dimensional partial differential equation, Int. J. numer. methods eng., 37, 16, 2703-2716, (1994) · Zbl 0813.65106
[6] Diaz, A.R., A wavelet-Galerkin scheme for analysis of large-scale problems on simple domains, Int. J. numer. methods eng., 44, 1599-1616, (1999) · Zbl 0932.74077
[7] A. Latto, H.K. Resnikoff, E. Tenenbaum, The evaluation of connection coefficients of compactly supported wavelets, in: Proceedings of the USA-French Workshop on Wavelets and Turbulence, Princeton University, 1991.
[8] Restrepo, J.M.; Leaf, G.K., Inner product computations using periodized Daubechies wavelets, Int. J. numer. methods eng., 40, 3557-3578, (1997) · Zbl 0906.65138
[9] Liu, Y.; Liu, Y.; Cen, Z., Daubechies wavelet meshless method for 2-D elastic problems, Tsinghua sci. tech., 13, 605-608, (2008)
[10] Liu, Y.; Qin, F.; Liu, Y.; Cen, Z., A Daubechies wavelet-based method for elastic problems, Eng. anal. bound. elem., 34, 114-121, (2010) · Zbl 1244.74225
[11] Liu, Y.; Qin, F.; Liu, Y.; Cen, Z., The 2D large deformation analysis using Daubechies wavelet, Comput. mech., 45, 179-187, (2010) · Zbl 1398.74469
[12] Naginoa, H.; Mikamia, T.; Mizusawa, T., Three-dimensional free vibration analysis of isotropic rectangular plates using the B-spline Ritz method, J. sound vib., 317, 329-353, (2008)
[13] Caglar, N.; Caglar, H., B-spline method for solving linear system of second-order boundary value problems, Comput. math. appl., 57, 757-762, (2009) · Zbl 1186.65099
[14] Kagan, P.; Fischer, A.; Bar-Yoseph, P.Z., Mechanically based models: adaptive refinement for B-spline finite element, Int. J. numer. methods eng., 57, 1145-1175, (2003) · Zbl 1062.74615
[15] Burla, R.K.; Kumar, A.V., Implicit boundary method for analysis using uniform B-spline basis and structured grid, Int. J. numer. methods eng., 76, 1993-2028, (2008) · Zbl 1195.74219
[16] Lakestani, M.; Dehghan, M., Numerical solution of fokker—planck equation using the cubic B-spline scaling functions, Numer. methods partial differ. equat., 25, 418-429, (2009) · Zbl 1159.65009
[17] Hughes, T.J.R.; Cottrell, J.A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. methods appl. mech. eng., 194, 4135-4195, (2005) · Zbl 1151.74419
[18] Cottrell, J.A.; Reali, A.; Bazilevs, Y.; Hughes, T.J.R., Isogeometric analysis of structural vibrations, Comput. methods appl. mech. eng., 195, 5257-5296, (2006) · Zbl 1119.74024
[19] Vasilyev, O.V.; Paolucci, S.; Sen, M., A multilevel wavelet collocation method for solving partial differential equations in a finite domain, J. comput. phys., 120, 33-47, (1995) · Zbl 0837.65113
[20] Oleg, V.; Samuel, P., A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain, J. comput. phys., 125, 498-512, (1996) · Zbl 0847.65073
[21] Vasilyev, V.O.; Kevlahan Nicholas, K.R., An adaptive multilevel wavelet collocation method for elliptic problems, J. comput. phys., 206, 412-431, (2005) · Zbl 1070.65122
[22] Kim, Y.Y.; Jang, G.W., Interpolation wavelet-based multi-scale Galerkin method for thin-walled box beam analysis, Int. J. numer. methods eng., 53, 1575-1592, (2002) · Zbl 1114.74503
[23] Kim, J.E.; Jang, G.W.; Kim, YY., Adaptive multiscale wavelet-Galerkin analysis for plane elasticity problems and its application to multiscale topology design optimization, Int. J. solids struct., 40, 6473-6496, (2003) · Zbl 1057.74029
[24] Hughes, T.J.R., Multiscale phenomena: green’s function, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods, Comput. methods appl. mech. eng., 127, 387-401, (1995) · Zbl 0866.76044
[25] Oberai, A.A.; Pinsky, P.M., A multiscale finite element method for the helmhotz equation, Comput. methods appl. mech. eng., 154, 281-297, (1998) · Zbl 0937.65119
[26] Garikipati, K.; Hughes, T.J.R., A variational multiscale approach to strain – formulation for multidimensional problems, Comput. methods appl. mech. eng., 188, 39-60, (2000) · Zbl 1011.74069
[27] Hughes, T.J.R.; Oberai, A.A.; Mazzei, L., The multiscale formulation of large eddy simulation: decay of homogeneous isotropic turbulence, Phys. fluids, 13, 505-512, (2001) · Zbl 1184.76236
[28] Liu, W.K.; Chen, Y., Wavelet and multiple scale reproducing kernel methods, Int. J. numer. methods fluids, 21, 901-931, (1995) · Zbl 0885.76078
[29] Liu, W.K.; Jun, S.; Li, S.; Adee, J.; Belytschko, T., Reproducing kernel particle methods for structural dynamics, Int. J. numer. methods eng., 38, 1655-1679, (1995) · Zbl 0840.73078
[30] Liu, W.K.; Hao, S.; Belytschko, T.; Li, S.; Chang, C.T., Multi-scale methods, Int. J. numer. methods eng., 47, 1343-1361, (2000) · Zbl 0976.74080
[31] Belytschko, T.; Organ, D., Coupled finite element – element free Galerkin method, Comput. mech., 17, 186-195, (1995) · Zbl 0840.73058
[32] Gu, Y.T.; Liu, G.R., A coupled element free Galerkin/boundary element method for stress analysis of two-dimensional solids, Comput. methods appl. mech. eng., 190, 34, 4405-4419, (2001)
[33] Gu, Y.T.; Liu, G.R., Hybrid boundary point interpolation methods and their coupling with the element free Galerkin method, Eng. anal. bound. elem., 27, 9, 905-917, (2003) · Zbl 1060.74651
[34] Hegen, D., Element-free Galerkin methods in combination with finite element approaches, Comput. methods appl. mech. eng., 135, 143-166, (1996) · Zbl 0893.73063
[35] Timoshenko, S.P.; Goodier, J.N., Theory of elasticity, (1970), McGraw-Hill New York · Zbl 0266.73008
[36] Fan, T., Theory of fracture, (2003), Science Press Beijing
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.