zbMATH — the first resource for mathematics

ADER schemes for nonlinear systems of stiff advection-diffusion-reaction equations. (English) Zbl 1221.65231
Summary: We extend the high order ADER finite volume schemes introduced for stiff hyperbolic balance laws by M. Dumbser, C. Enaux and E. F. Toro [J. Comput. Phys. 227, No. 8, 3971–4001 (2008; Zbl 1142.65070)] to nonlinear systems of advection-diffusion-reaction equations with stiff algebraic source terms. We derive a new efficient formulation of the local space-time discontinuous Galerkin predictor using a nodal approach whose interpolation points are tensor-products of Gauss-Legendre quadrature points. Furthermore, we propose a new simple and efficient strategy to compute the initial guess of the locally implicit space-time DG scheme: the Gauss-Legendre points are initialized sequentially in time by a second order accurate MUSCL-type approach for the flux term combined with a Crank-Nicolson method for the stiff source terms. We provide numerical evidence that when starting with this initial guess, the final iterative scheme for the solution of the nonlinear algebraic equations of the local space-time DG predictor method becomes more efficient. We apply our new numerical method to some systems of advection-diffusion-reaction equations with particular emphasis on the asymptotic preserving property for linear model systems and compressible Navier-Stokes equations with chemical reactions.

65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI
[1] Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002) · Zbl 1008.65080 · doi:10.1137/S0036142901384162
[2] Becker, R.: Stosswelle und Detonation. Physik 8, 321 (1923) · JFM 49.0391.01 · doi:10.1007/BF01329605
[3] Bonnet, A., Luneau, J.: Aérodynamique. Théories de la dynamique des fluides. Cepadues Editions, Toulouse (1989). ISBN:2854282183 · Zbl 0744.76008
[4] Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection–dominated problems. J. Sci. Comput. 16, 173–261 (2001) · Zbl 1065.76135 · doi:10.1023/A:1012873910884
[5] Dumbser, M.: Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations. Comput. Fluids 39, 60–76 (2010) · Zbl 1242.76161 · doi:10.1016/j.compfluid.2009.07.003
[6] Dumbser, M., Balsara, D.S.: High-order unstructured one-step PNPM schemes for the viscous and resistive MHD equations. Comput. Model. Eng. Sci. 54, 301–333 (2009) · Zbl 1231.76345
[7] Dumbser, M., Toro, E.F.: A simple extension of the Osher Riemann solver to non-conservative hyperbolic systems. J. Sci. Comput. (2010). doi: 10.1007/s10915-010-9400-3 · Zbl 1220.65110
[8] Dumbser, M., Zanotti, O.: Very high order PNPM schemes on unstructured meshes for the resistive relativistic mhd equations. J. Comput. Phys. 228, 6991–7006 (2009) · Zbl 1261.76028 · doi:10.1016/j.jcp.2009.06.009
[9] Dumbser, M., Balsara, D., Toro, E.F., Munz, C.D.: A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes. J. Comput. Phys. 227, 8209–8253 (2008) · Zbl 1147.65075 · doi:10.1016/j.jcp.2008.05.025
[10] Dumbser, M., Enaux, C., Toro, E.F.: Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws. J. Comput. Phys. 227, 3971–4001 (2008) · Zbl 1142.65070 · doi:10.1016/j.jcp.2007.12.005
[11] Dumbser, M., Hidalgo, A., Castro, M., Parés, C., Toro, E.F.: FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng. 199, 625–647 (2010) · Zbl 1227.76043 · doi:10.1016/j.cma.2009.10.016
[12] Fedkiw, R.P., Merriman, B., Osher, S.: High accuracy numerical methods for thermally perfect gas flows with chemistry. J. Comput. Phys. 132, 175–190 (1997) · Zbl 0888.76053 · doi:10.1006/jcph.1996.5622
[13] Godlewski, E., Raviart, P.A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer, Berlin (1996). ISBN:978-0387945293 · Zbl 0860.65075
[14] Harten, A., Engquist, B., Osher, S., Chakravarthy, S.: Uniformly high order essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987) · Zbl 0652.65067 · doi:10.1016/0021-9991(87)90031-3
[15] Helzel, C., LeVeque, R.J., Warnecke, G.: A modified fractional step method for the accurate approximation of detonation waves. SIAM J. Sci. Comput. 22, 1489–1510 (2000) · Zbl 0983.65105 · doi:10.1137/S1064827599357814
[16] Jiang, G.-S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996) · Zbl 0877.65065 · doi:10.1006/jcph.1996.0130
[17] Jin, S.: Efficient asymptotic-preserving (ap) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21, 441–454 (1999) · Zbl 0947.82008 · doi:10.1137/S1064827598334599
[18] Powers, J.M., Aslam, T.D.: Exact solution for multidimensional compressible reactive flow for verifying numerical algorithms. AIAA J. 44, 337–344 (2006) · doi:10.2514/1.14404
[19] Powers, J.M., Paolucci, S.: Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. AIAA J. 43, 1088–1099 (2005) · doi:10.2514/1.11641
[20] Stroud, A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, Englewood Cliffs (1971) · Zbl 0379.65013
[21] Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics, 2nd edn. Springer, Berlin (1999) · Zbl 0923.76004
[22] Toro, E.F., Hidalgo, A.: ADER finite volume schemes for nonlinear reaction-diffusion equations. Appl. Numer. Math. 59, 73–100 (2009) · Zbl 1155.65065 · doi:10.1016/j.apnum.2007.12.001
[23] van Leer, B.: Towards the ultimate conservative difference scheme V: a second order sequel to Godunov’s method. J. Comput. Phys. 32, 101–136 (1979) · Zbl 1364.65223 · doi:10.1016/0021-9991(79)90145-1
[24] Zel’dovich, Ya.B., Zel’dovich, Ia.B., Raizer, Yu.P.: Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Dover, New York (2002). ISBN:978-0486420028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.