×

zbMATH — the first resource for mathematics

The EFM approach for single-index models. (English) Zbl 1221.62062
Summary: Single-index models are natural extensions of linear models and circumvent the so-called curse of dimensionality. They are becoming increasingly popular in many scientific fields including biostatistics, medicine, economics and financial econometrics. Estimating and testing the model index coefficients \(\mathbf{\beta}\) is one of the most important objectives in the statistical analysis. However, the commonly used assumption on the index coefficients, \(\parallel \mathbf{\beta} \parallel = 1\), represents a non-regular problem: the true index is on the boundary of the unit ball. We introduce the EFM approach, a method of estimating functions, to study the single-index model. The procedure is to first relax the equality constraint to one with \((d - 1)\) components of \(\mathbf{\beta}\) lying in an open unit ball, and then to construct the associated \((d - 1)\) estimating functions by projecting the score function to the linear space spanned by the residuals with the unknown link being estimated by kernel estimating functions. The root-\(n\) consistency and asymptotic normality for the estimator obtained from solving the resulting estimating equations are achieved, and a Wilks type theorem for testing the index is demonstrated. A noticeable result we obtain is that our estimator for \(\mathbf{\beta}\) has smaller or equal limiting variance than the estimator of R. J. Carroll et al. [J. Am. Stat. Assoc. 92, No. 438, 447–489 (1997; Zbl 0890.62053)]. A fixed-point iterative scheme for computing this estimator is proposed. This algorithm only involves one-dimensional nonparametric smoothers, thereby avoiding the data sparsity problem caused by high model dimensionality. Numerical studies based on simulation and on applications suggest that this new estimating system is quite powerful and easy to implement.

MSC:
62G08 Nonparametric regression and quantile regression
62G20 Asymptotic properties of nonparametric inference
62H12 Estimation in multivariate analysis
65C60 Computational problems in statistics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Andrews, D. W. K. (1987). Conssitency in nonlinear econometric models: A genetic uniform law of large numbers. Econometrica 55 1465-1471. · Zbl 0646.62101 · doi:10.2307/1913568
[2] Carroll, R. J., Ruppert, D. and Welsh, A. H. (1998). Local estimating equations. J. Amer. Statist. Assoc. 93 214-227. · Zbl 0910.62033 · doi:10.2307/2669618
[3] Carroll, R. J., Fan, J., Gijbels, I. and Wand, M. P. (1997). Generalized partially linear single-index models. J. Amer. Statist. Assoc. 92 447-489. · Zbl 0890.62053 · doi:10.2307/2965697
[4] Chang, Z. Q., Xue, L. G. and Zhu, L. X. (2010). On an asymptotically more efficient estimation of the single-index model. J. Multivariate Anal. 101 1898-1901. · Zbl 1190.62082 · doi:10.1016/j.jmva.2010.02.005
[5] Cui, X., Härdle, W. and Zhu, L. (2010). Supplementary materials for “The EFM approach for single-index models.” . · dx.doi.org
[6] Fan, J. and Gijbels, I. (1996). Local Polynomial Modeling and Its Applications . Chapman & Hall, London. · Zbl 0873.62037
[7] Fan, J., Heckman, N. E. and Wand, M. P. (1995). Local polynomial kernel regression for generalized linear models and quasi-likelihood functions. J. Amer. Statist. Assoc. 90 141-150. · Zbl 0818.62036 · doi:10.2307/2291137
[8] Fan, J. and Jiang, J. (2007). Nonparametric inference with generalized likelihood ratio test. Test 16 409-478. · Zbl 1131.62035 · doi:10.1007/s11749-007-0080-8
[9] Härdle, W., Hall, P. and Ichimura, H. (1993). Optimal smoothing in single-index models. Ann. Statist. 21 157-178. · Zbl 0770.62049 · doi:10.1214/aos/1176349020
[10] Härdle, W. and Mammen, E. (1993). Testing parametric versus nonparametric regression. Ann. Statist. 21 1926-1947. · Zbl 0795.62036 · doi:10.1214/aos/1176349403
[11] Härdle, W., Mammen, E. and Müller, M. (1998). Testing parametric versus semiparametric modelling in generalized linear models. J. Amer. Statist. Assoc. 93 1461-1474. · Zbl 1064.62543 · doi:10.2307/2670060
[12] Härdle, W., Mammen, E. and Proenca, I. (2001). A bootstrap test for single index models. Statistics 35 427-452. · Zbl 0996.62042 · doi:10.1080/02331880108802746
[13] Härdle, W. and Stoker, T. M. (1989). Investigating smooth multiple regression by method of average derivatives. J. Amer. Statist. Assoc. 84 986-995. · Zbl 0703.62052 · doi:10.2307/2290074
[14] Heyde, C. C. (1997). Quasi-likelihood and Its Application: A General Approach to Optimal Parameter Estimation . Springer, New York. · Zbl 0879.62076 · doi:10.1007/b98823
[15] Horowitz, J. L. and Härdle, W. (1996). Direct semiparametric estimation of a single-index model with discrete covariates. J. Amer. Statist. Assoc. 91 1632-1640. · Zbl 0881.62037 · doi:10.2307/2291590
[16] Hristache, M., Juditski, A. and Spokoiny, V. (2001). Direct estimation of the index coefficients in a single-index model. Ann. Statist. 29 595-623. · Zbl 1012.62043 · doi:10.1214/aos/1009210681
[17] Hristache, M., Juditsky, A., Polzehl, J. and Spokoiny, V. (2001). Structure adaptive approach for dimension reduction. Ann. Statist. 29 1537-1566. · Zbl 1043.62052
[18] Huh, J. and Park, B. U. (2002). Likelihood-based local polynomial fitting for single-index models. J. Multivariate Anal. 80 302-321. · Zbl 0992.62042 · doi:10.1006/jmva.2000.1984
[19] Ichimura, H. (1993). Semiparametric least squares (SLS) and weighted SLS estimation of single-index models. J. Econometrics 58 71-120. · Zbl 0816.62079 · doi:10.1016/0304-4076(93)90114-K
[20] Kane, M., Holt, J. and Allen, B. (2004). Results concerning the generalized partially linear single-index model. J. Stat. Comput. Simul. 72 897-912. · Zbl 1054.62044 · doi:10.1080/00949650410001653133
[21] Kohavi, R. (1996). Scaling up the accuracy of naive-Bayes classifiers: A decision-tree hybrid. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining 202-207. AAAI Press, Menlo Park, CA.
[22] Kong, E., Linton, O. and Xia, Y. (2010). Uniform Bahadur representation for local polynomial estimates of M-regression and its application to the additive model. Econometric Theory 26 1529-1564. · Zbl 1198.62030 · doi:10.1017/S0266466609990661
[23] Lin, W. and Kulasekera, K. B. (2007). Identifiability of single-index models and additive-index models. Biometrika 94 496-501. · Zbl 1132.62050 · doi:10.1093/biomet/asm029
[24] Madalozzo, R. C. (2008). An analysis of income differentials by marital status. Estudos Econôicos 38 267-292.
[25] McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models , 2nd ed. Champman & Hall, London. · Zbl 0744.62098
[26] Murray, C. (1997). IQ and economic success. The Public Interest 128 21-35.
[27] Polzehl, J. and Sperlich, S. (2009). A note on structural adaptive dimension reduction. J. Stat. Comput. Simul. 79 805-818. · Zbl 1186.62084 · doi:10.1080/00949650801959699
[28] Powell, J. L., Stock, J. H. and Stoker, T. M. (1989). Semiparametric estimation of index coefficients. Econometrica 57 1403-1430. · Zbl 0683.62070 · doi:10.2307/1913713
[29] Wang, H. and Xia, Y. (2008). Sliced regression for dimension reduction. J. Amer. Statist. Assoc. 103 811-821. · Zbl 1306.62168 · doi:10.1198/016214508000000418
[30] Wang, J. L., Xue, L. G., Zhu, L. X. and Chong, Y. S. (2010). Estimation for a partial-linear single-index model. Ann. Statist. 38 246-274. · Zbl 1181.62038 · doi:10.1214/09-AOS712
[31] Xia, Y. (2006). Asymptotic distributions for two estimators of the single-index model. Econometric Theory 22 1112-1137. · Zbl 1170.62323 · doi:10.1017/S0266466606060531
[32] Xia, Y., Tong, H., Li, W. K. and Zhu, L. (2002). An adaptive estimation of dimension reduction space (with discussions). J. R. Stat. Soc. Ser. B Stat. Methodol. 64 363-410. · Zbl 1091.62028 · doi:10.1111/1467-9868.03411
[33] Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially linear single index models. J. Amer. Statist. Assoc. 97 1042-1054. · Zbl 1045.62035 · doi:10.1198/016214502388618861
[34] Zhou, J. and He, X. (2008). Dimension reduction based on constrained canonical correlation and variable filtering. Ann. Statist. 36 1649-1668. · Zbl 1142.62045 · doi:10.1214/07-AOS529
[35] Zhu, L. X. and Xue, L. G. (2006). Empirical likelihood confidence regions in a partially linear single-index model. J. R. Stat. Soc. Ser. B Stat. Methodol. 68 549-570. · Zbl 1110.62055 · doi:10.1111/j.1467-9868.2006.00556.x
[36] Zhu, L. P. and Zhu, L. X. (2009a). Nonconcave penalized inverse regression in single-index models with high dimensional predictors. J. Multivariate Anal. 100 862-875. · Zbl 1157.62037 · doi:10.1016/j.jmva.2008.09.003
[37] Zhu, L. P. and Zhu, L. X. (2009b). On distribution weighted partial least squares with diverging number of highly correlated predictors. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 525-548. · Zbl 1248.62097 · doi:10.1111/j.1467-9868.2008.00697.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.