×

zbMATH — the first resource for mathematics

A proof of Lindner’s conjecture on embeddings of partial Steiner triple systems. (English) Zbl 1221.05029
Summary: The authors prove Lindner’s conjecture that any partial Steiner triple system of order \(u\) can be embedded in a Steiner triple system of order \(v\) if \(v \equiv 1,3 \pmod 6\) and \(v \geq 2u+1\).

MSC:
05B07 Triple systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Andersen, Embedding partial Steiner triple systems, Proc London Math Soc 41 pp 557– (1980) · Zbl 0461.05010
[2] Bryant, A conjecture on small embeddings of partial Steiner triple systems, J Combin Des 10 pp 313– (2002) · Zbl 1001.05025
[3] Bryant, Embeddings of partial Steiner triple systems, J Combin Theory Ser A 106 pp 77– (2004) · Zbl 1042.05017
[4] Bryant, Existence and embeddings of partial Steiner triple systems of order ten with cubic leaves, Discrete Math 284 pp 83– (2004) · Zbl 1045.05017
[5] Colbourn, Completing small partial triple systems, Discrete Math 45 pp 165– (1983) · Zbl 0517.05011
[6] Colbourn, Triple Systems (1999)
[7] Doyen, Embeddings of Steiner triple systems, Discrete Math 5 pp 229– (1973) · Zbl 0263.05017
[8] Fournier, Colorations des arêtes d’un graphe, Colloque sur la Théorie des Graphes (Brussels, 1973), Cahiers Centre Études Recherche Opér 15 pp 311– (1973)
[9] Kirkman, On a problem in combinations, Cambridge Dublin Math J 2 pp 191– (1847)
[10] Lindner, A partial Steiner triple system of order n can be embedded in a Steiner triple system of order \(6n+3\), J Combin Theory Ser A 18 pp 349– (1975) · Zbl 0304.05005
[11] C. C. Lindner and T. Evans, Finite embedding theorems for partial designs and algebras, SMS 56, Les Presses de l’Université de Montréal, 1977.
[12] Schönheim, On maximal systems of k-tuples, Studia Sci Math Hungar 1 pp 363– (1966) · Zbl 0146.01403
[13] Treash, The completion of finite incomplete Steiner triple systems with applications to loop theory, J Combin Theory Ser A 10 pp 259– (1971) · Zbl 0217.02001
[14] Turán, An extremal problem in graph theory, Mat Fiz Lapok 48 pp 436– (1941)
[15] Vizing, On an estimate of the chromatic class of a p-graph (in Russian), Diskret Analiz 3 pp 25– (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.