×

zbMATH — the first resource for mathematics

Dynamics of microcavity polaritons in the Markovian limit. (English) Zbl 1220.81212
Summary: A master equation for the reduced density matrix of the microcavity polaritons coupled with the reservoir of high energy excitons is derived. It is allowed both the polaritons and the excitons to be self-interacting systems. Long time asymptotic properties of the polariton population is studied in the whole range of the reservoir temperatures and the corresponding decoherence effects are reported.

MSC:
81V80 Quantum optics
81S22 Open systems, reduced dynamics, master equations, decoherence
82D20 Statistical mechanical studies of solids
47D06 One-parameter semigroups and linear evolution equations
82B30 Statistical thermodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Khitrova, G.; Gibbs, H.M.; Jahnke, F.; Kira, M.; Koch, S.W., Rev. mod. phys., 71, 1591, (1999)
[2] Weisbuch, C.; Nishioka, M.; Ishikawa, A.; Arakawa, Y., Phys. rev. lett., 69, 3314, (1992)
[3] Porras, D.; Ciuti, C.; Baumberg, J.J.; Tejedor, C., Phys. rev. B, 66, 085304, (2002)
[4] Alicki, R.; Lendi, K., Quantum dynamical semigroups and applications, (1987), Springer Berlin · Zbl 0652.46055
[5] Porras, D.; Tejedor, C., Phys. rev. B, 67, 161310(R), (2003)
[6] Kavokin, A.; Malpuech, G.; Laussy, F.P., Phys. lett. A, 306, 187, (2003)
[7] Tassone, F.; Yamamoto, Y., Phys. rev. B, 59, 10830, (1999)
[8] Alicki, R., Phys. rev. A, 40, 4077, (1989)
[9] Davies, E.B., Commun. math. phys., 39, 91, (1974)
[10] Palmer, P.F., J. math. phys., 18, 527, (1977)
[11] Puri, Ravinder R., Mathematical methods in quantum optics, (2001), Springer Berlin · Zbl 1041.81108
[12] Zurek, W., Phys. rev. D, 26, 1862, (1982)
[13] Omnes, R., Phys. rev. A, 65, 052119, (2002)
[14] Blanchard, Ph.; Lugiewicz, P.; Olkiewicz, R., Phys. lett. A, 314, 29, (2003)
[15] Blanchard, Ph.; Olkiewicz, R., Phys. rev. lett., 90, 010403, (2003)
[16] Olkiewicz, R., Commun. math. phys., 208, 245, (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.