×

zbMATH — the first resource for mathematics

Explicit one-step time discretizations for discontinuous Galerkin and finite volume schemes based on local predictors. (English) Zbl 1220.65122
Summary: We consider a family of explicit one-step time discretizations for finite volume and discontinuous Galerkin schemes, which is based on a predictor-corrector formulation. The predictor remains local taking into account the time evolution of the data only within the grid cell. Based on a space-time Taylor expansion, this idea is already inherent in the MUSCL finite volume scheme to get second order accuracy in time and was generalized in the context of higher order ENO finite volume schemes. We interpret the space-time Taylor expansion used in this approach as a local predictor and conclude that other space-time approximate solutions of the local Cauchy problem in the grid cell may be applied.
Three possibilities are considered in this paper: (1) the classical space-time Taylor expansion, in which time derivatives are obtained from known space-derivatives by the Cauchy-Kovalewsky procedure; (2) a local continuous extension Runge-Kutta scheme and (3) a local space-time Galerkin predictor with a version suitable for stiff source terms. The advantage of the predictor-corrector formulation is that the time evolution is done in one step which establishes optimal locality during the whole time step. This time discretization scheme can be used within all schemes which are based on a piecewise continuous approximation as finite volume schemes, discontinuous Galerkin schemes or the recently proposed reconstructed discontinuous Galerkin or \(P_{N}P_{M}\) schemes.
The implementation of these approaches is described, advantages and disadvantages of different predictors are discussed and numerical results are shown.

MSC:
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abgrall, R., On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation, J. comput. phys., 144, 45-58, (1994) · Zbl 0822.65062
[2] Balsara, D.S.; Rumpf, T.; Dumbser, M.; Munz, C.D., Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, J. comput. phys., 228, 2480-2516, (2009) · Zbl 1275.76169
[3] Castro, C.C.; Toro, E.F., Solvers for the high-order Riemann problem for hyperbolic balance laws, J. comput. phys., 227, 2481-2513, (2008) · Zbl 1148.65066
[4] Colella, P.; Woodward, P., The piecewise parabolic method (ppm) for gas dynamical simulations, J. comput. phys., 54, 174-201, (1984) · Zbl 0531.76082
[5] Dumbser, M.; Balsara, D.S.; Toro, E.F.; Munz, C.-D., A unified framework for the construction of one-step finite-volume and discontinuous Galerkin schemes on unstructured meshes, J. comput. phys., 227, 8209-8253, (2008) · Zbl 1147.65075
[6] Dumbser, M.; Castro, M.; Parés, C.; Toro, E.F., ADER schemes on unstructured meshes for non-conservative hyperbolic systems: applications to geophysical flows, Comput. fluids, 38, 1731-1748, (2009) · Zbl 1177.76222
[7] Dumbser, M.; Enaux, C.; Toro, E.F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. comput. phys., 227, 3971-4001, (2008) · Zbl 1142.65070
[8] Dumbser, M.; Enaux, C.; Toro, E.F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J. comput. phys., 227, 3971-4001, (2008) · Zbl 1142.65070
[9] Dumbser, M.; Hidalgo, A.; Castro, M.; Parés, C.; Toro, E.F., FORCE schemes on unstructured meshes II: non-conservative hyperbolic systems, Comput. methods appl. mech. eng., 199, 625-647, (2010) · Zbl 1227.76043
[10] Dumbser, M.; Käser, M., Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems, J. comput. phys., 221, 693-723, (2007) · Zbl 1110.65077
[11] Dumbser, M.; Käser, M.; Titarev, V.A.; Toro, E.F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J. comput. phys., 226, 204-243, (2007) · Zbl 1124.65074
[12] Dumbser, M.; Käser, M.; Toro, E.F., An arbitrary high order discontinuous Galerkin method for elastic waves on unstructured meshes V: local time stepping and p-adaptivity, Geophys. J. int., 171, 695-717, (2007)
[13] Dumbser, M.; Munz, C.D., Building blocks for arbitrary high order discontinuous Galerkin schemes, J. sci. comput., 27, 215-230, (2006) · Zbl 1115.65100
[14] G. Gassner, Discontinuous Galerkin Methods for the Unsteady Compressible Navier-Stokes Equations, Ph.D. Thesis, Universität Stuttgart, 2009.
[15] G. Gassner, F. Hindenlang, C.D. Munz, A Runge-Kutta based discontinuous Galerkin method with time accurate local time stepping, in preparation. · Zbl 1358.76040
[16] Gassner, G.; Lörcher, F.; Munz, C.-D.; Hesthaven, J.S., Polymorphic nodal elements and their application in discontinuous Galerkin methods, J. comput. phys., 228, 1573-1590, (2009) · Zbl 1267.76062
[17] Gassner, G.; Lörcher, F.; Munz, C.-D., A contribution to the construction of diffusion fluxes for finite volume and discontinuous Galerkin schemes, J. comput. phys., 224, 2, 1049-1063, (2007) · Zbl 1123.76040
[18] Gassner, G.; Lörcher, F.; Munz, C.-D., A discontinuous Galerkin scheme based on a space-time expansion. II. viscous flow equations in multi dimensions, J. sci. comput., 34, 3, 260-286, (2008) · Zbl 1218.76027
[19] Gottlieb, S.; Shu, C.W., Total variation diminishing runge – kutta schemes, Math. comput., 67, 73-85, (1998) · Zbl 0897.65058
[20] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S., Uniformly high order essentially non-oscillatory schemes, III, J. comput. phys., 71, 231-303, (1987) · Zbl 0652.65067
[21] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S.R., Uniformly high order accurate essentially non-oscillatory schemes III, J. comput. phys., 71, 231-303, (1987) · Zbl 0652.65067
[22] Hesthaven, J.S.; Warburton, T., Nodal discontinuous Galerkin methods: algorithms analysis and applications, (2008), Springer-Verlag New York · Zbl 1134.65068
[23] Hirsch, C., Numerical computation of internal and external flows, (1989), Wiley
[24] Hu, C.; Shu, C.-W., Weighted essentially non-oscillatory schemes on triangular meshes, J. comput. phys., 1505, 97-127, (1999) · Zbl 0926.65090
[25] Hu, C.; Shu, C.W., Weighted essentially non-oscillatory schemes on triangular meshes, J. comput. phys., 150, 97-127, (1999) · Zbl 0926.65090
[26] Jiang, G.S.; Shu, C.W., Efficient implementation of weighted ENO schemes, J. comput. phys., 126, 202-228, (1996) · Zbl 0877.65065
[27] Klaij, C.; Van der Vegt, J.J.W.; Van der Ven, H., Space – time discontinuous Galerkin method for the compressible navier – stokes equations, J. comput. phys., 217, 589-611, (2006) · Zbl 1099.76035
[28] F. Lörcher, Predictor-Corrector Discontinuous Galerkin Schemes for the Numerical Solution of the Compressible Navier-Stokes Equations in Complex Domains, Ph.D. Thesis, University of Stuttgart, 2009.
[29] Lörcher, F.; Gassner, G.; Munz, C.-D., A discontinuous Galerkin scheme based on a space-time expansion. I. inviscid compressible flow in one space dimension, J. sci. comput., 32, 2, 175-199, (2007) · Zbl 1143.76047
[30] Lörcher, F.; Gassner, G.; Munz, C.-D., An explicit discontinuous Galerkin scheme with local time-stepping for general unsteady diffusion equations, J. comput. phys., 227, 11, 5649-5670, (2008) · Zbl 1147.65077
[31] Luo, H.; Luo, L.; Nourgaliev, R.; Mousseau, V.A.; Dinh, N., A reconstructed discontinuous Galerkin method for the compressible navier – stokes equations on arbitrary grids, J. comput. phys., 229, 6961-6978, (2010) · Zbl 1425.35138
[32] Owren, B.; Zennaro, M., Order barriers for continuous explicit runge – kutta methods, Math. comput., 56, 645-661, (1991) · Zbl 0718.65051
[33] Owren, B.; Zennaro, M., Derivation of efficient continuous explicit runge – kutta methods, SIAM J. sci. stat. comput., 13, 1488-1501, (1992) · Zbl 0760.65073
[34] Qiu, J.; Dumbser, M.; Shu, C.-W., The discontinuous Galerkin method with lax – wendroff type time discretizations, Comput. methods appl. mech. eng., 194, 4528-4543, (2005) · Zbl 1093.76038
[35] Courant, R.; Friedrichs, K.; Lewy, H., Über die partiellen differenzengleichungen der mathematischen physik, Mathematische annalen, 100, 32-74, (1928) · JFM 54.0486.01
[36] Schwartzkopff, T.; Munz, C.D.; Toro, E.F., ADER: a high order approach for linear hyperbolic systems in 2d, J. sci. comput., 17, 1-4, 231-240, (2002) · Zbl 1022.76034
[37] Shu, C.W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. comput. phys., 77, 439-471, (1988) · Zbl 0653.65072
[38] Shu, C.W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes II, J. comput. phys., 83, 32-78, (1989) · Zbl 0674.65061
[39] Sun, Y.; Wang, Z.J.; Liu, Y., Spectral (finite) volume method for conservation laws on unstructured grids VI: extension to viscous flow, J. comput. phys., 215, 41-58, (2006) · Zbl 1140.76381
[40] Taube, A.; Dumbser, M.; Balsara, D.; Munz, C.D., Arbitrary high order discontinuous Galerkin schemes for the magnetohydrodynamic equations, J. sci. comput., 30, 441-464, (2007) · Zbl 1176.76075
[41] Titarev, V.A.; Toro, E.F., ADER: arbitrary high order Godunov approach, J. sci. comput., 17, 1-4, 609-618, (2002) · Zbl 1024.76028
[42] Titarev, V.A.; Toro, E.F., ADER schemes for three-dimensional nonlinear hyperbolic systems, J. comput. phys., 204, 715-736, (2005) · Zbl 1060.65641
[43] Toro, E.F.; Millington, R.C.; Nejad, L.A.M., Towards very high order Godunov schemes, (), 905-938 · Zbl 0989.65094
[44] Toro, E.F.; Titarev, V.A., Solution of the generalized Riemann problem for advection – reaction equations, Proc. R. soc. London, 271-281, (2002) · Zbl 1019.35061
[45] Toro, E.F.; Titarev, V.A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J. comput. phys., 212, 150-165, (2006) · Zbl 1087.65590
[46] van der Vegt, J.J.W.; van der Ven, H., Space – time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows: I. general formulation, J. comput. phys., 182, 2, 546-585, (2002) · Zbl 1057.76553
[47] van Leer, B., Towards the ultimate conservative difference scheme V: A second order sequel to godunov’s method, J. comput. phys., 32, 101-136, (1979) · Zbl 1364.65223
[48] Zhang, Y.T.; Shu, C.W., Third order WENO scheme on three dimensional tetrahedral meshes, Commun. comput. phys., 5, 836-848, (2009) · Zbl 1364.65177
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.