×

zbMATH — the first resource for mathematics

On permutation polynomials of prescribed shape. (English) Zbl 1220.11145
Summary: We count permutation polynomials of \(\mathbb F_q\) which are sums of \(m+1 (\geq 2\)) monomials of prescribed degrees. This allows us to prove certain results about existence of permutation polynomials of prescribed shape.

MSC:
11T06 Polynomials over finite fields
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Carlitz, L.; Wells, C., The number of solutions of a special system of equations in a finite field, Acta arith. XII, 77-84, (1966) · Zbl 0147.04003
[2] Chu, W.; Golomb, S.W., Circular tuscan-k arrays from permutation binomials, J. combin. theory ser. A, 97, 1, 195-202, (2002) · Zbl 1009.05032
[3] Das, P., The number of permutation polynomials of a given degree over a finite field, Finite fields appl., 8, 478-490, (2002) · Zbl 1029.11066
[4] Fried, M.D.; Guralnick, R.; Saxl, J., Schur covers and Carlitz’s conjecture, Israel J. math., 82, 1-3, 157-225, (1993) · Zbl 0855.11063
[5] Konyagin, S.; Pappalardi, F., Enumerating permutation polynomials over finite fields by degree, Finite fields appl., 8, 4, 548-553, (2002) · Zbl 1029.11067
[6] Konyagin, S.; Pappalardi, F., Enumerating permutation polynomials over finite fields by degree. II, Finite fields appl., 12, 1, 26-37, (2006) · Zbl 1163.11350
[7] Laigle-Chapuy, Y., Permutation polynomials and applications to coding theory, Finite fields appl., 13, 1, 58-70, (2007) · Zbl 1107.11048
[8] Lidl, R.; Müller, W.B., Permutation polynomials in RSA-cryptosystems, (), 293-301
[9] Lidl, R.; Mullen, G.L., When does a polynomial over a finite field permute the elements of the field?, Amer. math. monthly, 95, 243-246, (1988) · Zbl 0653.12010
[10] Lidl, R.; Niederreiter, H., Finite fields, Encyclopedia math. appl., (1997), Cambridge Univ. Press
[11] A. Masuda, M.E. Zieve, Permutation binomials over finite fields, Trans. Amer. Math. Soc., in press · Zbl 1239.11139
[12] Sun, J.; Takeshita, O.Y., Interleavers for turbo codes using permutation polynomials over integer rings, IEEE trans. inform. theory, 51, 1, 101-119, (2005) · Zbl 1280.94121
[13] Wan, D.; Lidl, R., Permutation polynomials of the form \(x^r f(x^{(q - 1) / d})\) and their group structure, Monatsh. math., 112, 149-163, (1991) · Zbl 0737.11040
[14] Weil, A., On some exponential sums, Proc. natl. acad. sci. USA, 27, 345-347, (1941) · Zbl 0061.06406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.