×

zbMATH — the first resource for mathematics

AutoDipole – automated generation of dipole subtraction terms. (English) Zbl 1219.81244
Summary: We present an automated generation of the subtraction terms for next-to-leading order QCD calculations in the Catani-Seymour dipole formalism. For a given scattering process with \(n\) external particles our Mathematica package generates all dipole terms, allowing for both massless and massive dipoles. The numerical evaluation of the subtraction terms proceeds with MadGraph, which provides Fortran code for the necessary scattering amplitudes. Checks of the numerical stability are discussed.

MSC:
81V05 Strong interaction, including quantum chromodynamics
81T13 Yang-Mills and other gauge theories in quantum field theory
81T25 Quantum field theory on lattices
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81-08 Computational methods for problems pertaining to quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Catani, S.; Seymour, M.H., Nuclear phys. B, 485, 291, (1997)
[2] Catani, S., Nuclear phys. B, 627, 189, (2002)
[3] Stelzer, T.; Long, W.F., Comput. phys. comm., 81, 357, (1994)
[4] Maltoni, F.; Stelzer, T., Jhep, 0302, 027, (2003)
[5] Alwall, J., Jhep, 0709, 028, (2007)
[6] Hagiwara, K.; Murayama, H.; Watanabe, I., Nuclear phys. B, 367, 257, (1991)
[7] H. Murayama, I. Watanabe, K. Hagiwara, KEK-91-11
[8] Bloch, F.; Nordsieck, A., Phys. rev., 52, 54, (1937)
[9] Kinoshita, T., J. math. phys., 3, 650, (1962)
[10] Lee, T.D.; Nauenberg, M., Phys. rev., 133, B1549, (1964)
[11] Giele, W.T.; Glover, E.W.N., Phys. rev. D, 46, 1980, (1992)
[12] Giele, W.T.; Glover, E.W.N.; Kosower, D.A., Nuclear phys. B, 403, 633, (1993)
[13] Keller, S.; Laenen, E., Phys. rev. D, 59, 114004, (1999)
[14] Harris, B.W.; Owens, J.F., Phys. rev. D, 65, 094032, (2002)
[15] Frixione, S.; Kunszt, Z.; Signer, A., Nuclear phys. B, 467, 399, (1996)
[16] Phaf, L.; Weinzierl, S., Jhep, 0104, 006, (2001)
[17] Hasegawa, K.; Moch, S.; Uwer, P., Nuclear phys. B proc. suppl., 183, 268, (2008)
[18] Hasegawa, K.; Moch, S.; Uwer, P., Nuclear phys. B proc. suppl., 186, 86, (2009)
[19] Gleisberg, T.; Krauss, F., Eur. phys. J. C part. fields, 53, 501, (2008)
[20] Seymour, M.H.; Tevlin, C., (2008)
[21] Frederix, R.; Gehrmann, T.; Greiner, N., Jhep, 0809, 122, (2008)
[22] Czakon, M.; Papadopoulos, C.G.; Worek, M., (2009)
[23] Frederix, R., (2009)
[24] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E.W.N., Nuclear phys. B, 691, 195, (2004)
[25] Weinzierl, S., Jhep, 0303, 062, (2003)
[26] Frixione, S.; Grazzini, M., Jhep, 0506, 010, (2005)
[27] Somogyi, G.; Trocsanyi, Z.; Del Duca, V., Jhep, 0506, 024, (2005)
[28] Gehrmann-De Ridder, A.; Gehrmann, T.; Glover, E.W.N., Jhep, 0509, 056, (2005)
[29] Somogyi, G.; Trocsanyi, Z., Jhep, 0701, 052, (2007)
[30] Somogyi, G.; Trocsanyi, Z.; Del Duca, V., Jhep, 0701, 070, (2007)
[31] Aglietti, U., Jhep, 0809, 107, (2008)
[32] Bolzoni, P., Jhep, 0908, 079, (2009)
[33] Mitov, A.; Moch, S., Jhep, 0705, 001, (2007)
[34] Floratos, E.G.; Kounnas, C.; Lacaze, R., Nuclear phys. B, 192, 417, (1981)
[35] Dittmaier, S.; Uwer, P.; Weinzierl, S., Phys. rev. lett., 98, 262002, (2007)
[36] Dittmaier, S.; Uwer, P.; Weinzierl, S., Eur. phys. J. C part. fields, 59, 625, (2009)
[37] Xu, Z.; Zhang, D.H.; Chang, L., Nuclear phys. B, 291, 392, (1987)
[38] S. Weinzierl, SACLAY-SPH-T-98-083
[39] Schwinn, C.; Weinzierl, S., Jhep, 0505, 006, (2005)
[40] Dittmaier, S.; Kallweit, S.; Uwer, P., Phys. rev. lett., 100, 062003, (2008)
[41] or
[42] or
[43] Nagy, Z.; Trocsanyi, Z., Phys. rev. D, 59, 014020, (1999)
[44] Campbell, J.M.; Ellis, R.K.; Tramontano, F., Phys. rev. D, 70, 094012, (2004)
[45] Campbell, J.M.; Tramontano, F., Nuclear phys. B, 726, 109, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.