zbMATH — the first resource for mathematics

Heat transfer due to electroosmotic flow of viscoelastic fluids in a slit microchannel. (English) Zbl 1219.80084
Summary: The bio-microfluidic systems are usually encountered with non-Newtonian behaviors of working fluids. The rheological behavior of some bio-fluids can be described by differential viscoelastic constitutive equations that are related to PTT and FENE-P models. In the present work, thermal transport characteristics of the steady fully developed electroosmotic flow of these fluids in a slit microchannel with constant wall heat fluxes have been investigated. The Debye-Huckel linearization is adopted and the effects of viscous dissipation and Joule heating are taken into account. Analytical solutions are obtained for the transverse distributions of velocity and temperature and finally for Nusselt number. Two different behaviors are observed for the Nusselt number variations due to increasing \(\varepsilon _{ge}We^{2}\) which are an increasing trend for positive wall heat flux and a decreasing one for negative wall heat flux. However, the influence of \(\varepsilon _{ge}We^{2}\) on Nusselt number vanishes at higher values of the dimensionless Debye-Huckel parameter. It is also realized that the effect of viscous heating is more important at small values of both \(\varepsilon _{ge}We^{2}\) and the dimensionless Debye-Huckel parameter. Furthermore, the results show a singularity in Nusselt number at higher negative values of the dimensionless Joule heating parameter.

80A20 Heat and mass transfer, heat flow (MSC2010)
76A10 Viscoelastic fluids
76A05 Non-Newtonian fluids
76W05 Magnetohydrodynamics and electrohydrodynamics
Full Text: DOI
[1] Karniadakis, G.; Beskok, A.; Aluru, N.: Microflows and nanoflows, fundamentals and simulation, (2005) · Zbl 1115.76003
[2] Wang, X.; Wang, S.; Gendhar, B.; Cheng, C.; Byun, C. K.; Li, G.; Zhao, M.; Liu, S.: Electroosmotic pumps for microflow analysis, Trends anal. Chem. 28, 64-74 (2009)
[3] Burgreen, D.; Nakache, F. R.: Electrokinetic flow in ultrafine capillary slits, J. phys. Chem. 68, 1084-1091 (1964)
[4] Rice, C. L.; Whitehead, R.: Electrokinetic flow in a narrow cylindrical capillary, J. phys. Chem. 69, 4017-4024 (1965)
[5] Levine, S.; Marriott, J. R.; Neale, G.; Epstein, N.: Theory of electrokinetic flow in fine cylindrical capillaries at high zeta potentials, J. colloid interf. Sci. 52, 136-149 (1975)
[6] Philip, J. R.; Wooding, R. A.: Solution of the Poisson – Boltzmann equation about a cylindrical particle, J. chem. Phys. 52, 953-959 (1970)
[7] Kang, Y.; Yang, C.; Huang, X.: Dynamic aspects of electroosmotic flow in a cylindrical microcapillary, Int. J. Eng. sci. 40, 2203-2221 (2002)
[8] Wang, C. Y.; Liu, Y. H.; Chang, C. C.: Analytical solution of electro-osmotic flow in a semicircular microchannel, Phys. fluids 20, 063105 (2008) · Zbl 1182.76812
[9] Xuan, X.; Li, D.: Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge, J. colloid interf. Sci. 289, 291-303 (2005)
[10] Talapatra, S.; Chakraborty, S.: Double layer overlap in ac electroosmosis, Eur. J. Mech. B 27, 297-308 (2008) · Zbl 1154.76395
[11] Yang, R. J.; Fu, L. M.; Hwang, C. C.: Electroosmotic entry flow in a microchannel, J. colloid interf. Sci. 244, 173-179 (2001)
[12] Maynes, D.; Webb, B. W.: Fully developed electroosmotic heat transfer in microchannels, Int. J. Heat mass transfer 46, 1359-1369 (2003) · Zbl 1047.76598
[13] Yang, C.; Li, D.; Masliyah, J. H.: Modeling forced liquid convection in rectangular microchannels with electrokinetic effects, Int. J. Heat mass transfer 41, 4229-4249 (1998) · Zbl 0962.76614
[14] Kamisli, F.: Flow analysis of a power-law fluid confined in an extrusion die, Int. J. Eng. sci. 41, 1059-1083 (2003)
[15] Koh, Y. H.; Ong, N. S.; Chen, X. Y.; Lam, Y. C.; Chai, J. C.: Effect of temperature and inlet velocity on the flow of a non-Newtonian fluid, Int. commun. Heat mass transfer 31, 1005-1013 (2004)
[16] Das, M.; Jain, V. K.; Ghoshdastidar, P. S.: Fluid flow analysis of magnetorheological abrasive flow finishing (MRAFF) process, Int. J. Mach tools manu. 48, 415-426 (2008)
[17] Berli, C. L. A.; Olivares, M. L.: Electrokinetic flow of non-Newtonian fluids in microchannels, J. colloid interf. Sci. 320, 582-589 (2008)
[18] Afonso, A. M.; Alves, M. A.; Pinho, F. T.: Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels, J. non-Newtonian fluid mech. 159, 50-63 (2009) · Zbl 1274.76085
[19] Bharti, R. P.; Harvie, D. J. E.; Davidson, M. R.: Electroviscous effects in steady fully developed flow of a power-law liquid through a cylindrical microchannel, Int. J. Heat fluid flow 30, 804-811 (2009)
[20] Zhao, C.; Zholkovskij, E.; Masliyah, J. H.; Yang, C.: Analysis of electroosmotic flow of power-law fluids in a slit microchannel, J. colloid interf. Sci. 326, 503-510 (2008)
[21] Tang, G. H.; Li, X. F.; He, Y. L.; Tao, W. Q.: Electroosmotic flow of non-Newtonian fluid in microchannels, J. non-Newtonian fluid mech. 157, 133-137 (2009) · Zbl 1274.76379
[22] Das, S.; Chakraborty, S.: Analytical solutions for velocity, temperature and concentration distribution in electroosmotic microchannel flows of a non-Newtonian bio-fluid, Anal. chim. Acta 559, 15-24 (2006)
[23] Owens, R. G.: A new microstructure-based constitutive model for human blood, J. non-Newtonian fluid mech. 140, 57-70 (2006) · Zbl 1143.76344
[24] Vissink, A.; Waterman, H. A.; Gravermade, E. J.; Panders, A. K.; Vermey, A.: Rheological properties of saliva substitutes containing mucin, carboxymethyl cellulose or polyethylenoxide, J. oral pathol. Med. 13 (1984)
[25] Fam, H.; Bryant, J. T.; Konopoulou, M.: Rheological properties of synovial fluids, Biorheology 44, 59-74 (2007)
[26] Chen, X. Y.; Toh, K. C.; Chai, J. C.; Yang, C.: Developing pressure-driven liquid flow in microchannels under the electrokinetic effect, Int. J. Eng. sci. 42, 609-622 (2004)
[27] Stone, H. A.; Stroock, A. D.; Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip, Annu. rev. Fluid mech. 36, 381-411 (2004) · Zbl 1076.76076
[28] Tang, G. Y.; Yang, C.; Chai, C. K.; Gong, H. Q.: Numerical analysis of the thermal effect on electroosmotic flow and electrokinetic mass transport in microchannels, Anal. chim. Acta 507, 27-37 (2004)
[29] Bejan, A.: Convection heat transfer, (2004) · Zbl 1079.76648
[30] Phan-Thien, N.; Tanner, R. I.: New constitutive equation derived from network theory, J. non-Newtonian fluid mech. 2, 353-365 (1977) · Zbl 0361.76011
[31] Bird, R. B.; Dotson, P. J.; Johnson, N. L.: Polymer solution rheology based on a finitely extensible bead-spring chain model, J. non-Newtonian fluid mech. 7, 213-235 (1980) · Zbl 0432.76012
[32] Sadeghi, A.; Saidi, M. H.: Viscous dissipation effects on thermal transport characteristics of combined pressure and electroosmotically driven flow in microchannels, Int. J. Heat mass transfer 53, 3782-3791 (2010) · Zbl 1194.80064
[33] Ishijima, S. A.; Okuno, M.; Mohri, H.: Zeta potential of human X- and Y-bearing sperm, Int. J. Androl. 14, 340-347 (1991)
[34] Rykke, M.; Young, A.; Smistad, G.; Rolla, G.; Karlsen, J.: Zeta potentials of human salivary micelle-like particles, Colloids surf. B: biointerfaces 6, 51-56 (1996)
[35] Young, A.; Smistad, G.; Karlsen, J.; Rolla, G.; Rykke, M.: Zeta potentials of human enamel and hydroxyapatite as measured by the coulter DELSA 440, Adv. dental res. 11, 560-565 (1997)
[36] Centisa, V.; Vermette, P.: Physico-chemical properties and cytotoxicity assessment of PEG-modified liposomes containing human hemoglobin, Colloids surf. B: biointerfaces 65, 239-246 (2008)
[37] Schubert, S.; Freitag, R.: Investigation of the interaction mechanism of the recombinant human antibody MDJ8 and its fragments with chromatographic apatite phases, J. chromatogr. A 1216, 3831-3840 (2009)
[38] Uskokovic, V.; Castiglione, Z.; Cubas, P.; Zhu, L.; Li, W.; Habelitz, S.: Zeta-potential and particle size analysis of human amelogenins, J. dental res. 89, 149-153 (2010)
[39] Liechty, B. C.; Webb, B. W.; Maynes, R. D.: Convective heat transfer characteristics of electro-osmotically generated flow in microtubes at high wall potential, Int. J. Heat mass transfer 48, 2360-2371 (2005) · Zbl 1189.76550
[40] Thurston, G. B.: Rheological parameters for the viscosity, viscoelasticity and thixotropy of blood, Biorheology 16, 149-162 (1979)
[41] Maynes, D.; Webb, B. W.: The effect of viscous dissipation in thermally fully developed electroosmotic heat transfer in microchannels, Int. J. Heat mass transfer 47, 987-999 (2004)
[42] Burmeister, L. C.: Convective heat transfer, (1983)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.