×

zbMATH — the first resource for mathematics

Characterization of stem cells using mathematical models of multistage cell lineages. (English) Zbl 1219.34068
Summary: Stem cells dynamics is an important field of research with promising clinical impacts. Due to the revolutionary new technologies of biological data collection, an enormous amount of information on specific factors and genes responsible for cell differentiation is available. However, the mechanisms controlling stem cell self-renewal, maintenance and differentiation are still poorly understood and there exists no general characterization of stem cells based on observable cell properties. We address these problems with the help of mathematical models. Stem cells are described as the cell type that is most responsive to certain environmental signals. This results in a dynamic characterization of stemness that depends on environmental conditions and is not necessarily linked to a unique cell population.

MSC:
34C60 Qualitative investigation and simulation of ordinary differential equation models
92C37 Cell biology
93B52 Feedback control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Vaziri, H.; Dragowska, W.; Allsopp, R.C.; Thomas, T.E.; Harley, C.B.; Lansdorp, P.M., Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age, Proc. natl. acad. sci. USA, 91, 21, 9857-9860, (1994)
[2] Lansdorp, P.M., Stem cell biology for the transfusionist, Vox sang., 74, Suppl. 2, 91-94, (1998)
[3] Ehnert, S.; Glanemann, M.; Schmitt, A.; Vogt, S.; Shanny, N.; Nussler, N.C.; Stoeckle, A.; Nussler, A., The possible use of stem cells in regenerative medicine: dream or reality?, Langenbecks arch. surg., (2009)
[4] Gratwohl, A.; Baldomero, H., Trends of hematopoietic stem cell transplantation in the third millennium, Curr. opin. hematol., 16, 6, 420-426, (2009)
[5] Pearce, D.; Bonnet, D., Ageing within the hematopoietic stem cell compartment, Mech. ageing dev., 130, 54-57, (2008)
[6] Sharpless, N.E.; Schatten, G., Stem cell aging, J. gerontol. A biol. sci. med. sci., 64, 2, 202-204, (2009)
[7] Reya, T.; Morrison, S.J.; Clarke, M.F.; Weissman, I.L., Stem cells, cancer, and cancer stem cells, Nature, 414, 105-111, (2001)
[8] Beachy, P.A.; Karhadkar, S.S.; Berman, D.M., Tissue repair and stem cell renewal in carcinogenesis, Nature, 432, 324-331, (2004)
[9] Loeffler, M.; Roeder, I., Tissue stem cells: definition, plasticity, heterogeneity, self-organization and models – a conceptual approach, Cells tissues organs, 171, 1, 8-26, (2002)
[10] Dick, J.E., Stem cells: self-renewal writ in blood, Nature, 423, 231-233, (2003)
[11] Graf, T.; Stadtfeld, M., Heterogeneity of embryonic and adult stem cells, Cell stem cell, 3, 5, 480-483, (2008)
[12] Shepherd, B.E.; Kiem, H.P.; Lansdorp, P.M.; Dunbar, C.E.; Aubert, G.; LaRochelle, A.; Seggewiss, R.; Guttorp, P.; Abkowitz, J.L., Hematopoietic stem-cell behavior in nonhuman primates, Blood, 110, 6, 1806-1813, (2007)
[13] Marciniak-Czochra, A.; Stiehl, T.; Jaeger, W.; Ho, A.D.; Wagner, W., Modeling of asymmetric cell division in hematopoietic stem cells — regulation of self-renewal is essential for efficient repopulation, Stem cells dev., 18, 3, 377-385, (2009)
[14] Alison, M.R.; Islam, S., Attributes of adult stem cells, J. pathol., 217, 2, 144-160, (2009)
[15] Fried, W., Erythropoietin and erythropoiesis, Exp. hematol., 37, 9, 1007-1015, (2009)
[16] Metcalf, D., Hematopoietic cytokines, Blood, 111, 485-491, (2008)
[17] Bogner, V.; Keil, L.; Kanz, K.G.; Kirchhoff, C.; Leidel, B.A.; Mutschler, W.; Biberthaler, P., Very early posttraumatic serum alterations are significantly associated to initial massive rbc substitution, injury severity, multiple organ failure and adverse clinical outcome in multiple injured patients, Eur. J. med. res., 14, 7, 284-291, (2009)
[18] Morgan, D.; Desai, A.; Edgar, B.; Glotzer, M.; Heald, R.; Karsenti, E.; Nasmyth, K.; Pines, J.; Sherr, C., The cell cycle, ()
[19] Shinjo, K.; Takeshita, A.; Ohnishi, K.; Ohno, R., Granulocyte colony-stimulating factor receptor at various stages of normal and leukemic hematopoietic cells, Leuk. lymphoma, 25, 1-2, 37-46, (1997)
[20] Franzdottir, S.R.; Engelen, D.; Yuva-Aydemir, Y.; Schmidt, I.; Aho, A.; Klaembt, C., Switch in FGF signalling initiates glial differentiation in the drosophila eye, Nature, 460, 758-761, (2009)
[21] Bhattacharya, S.; Das, A.V.; Mallya, K.B.; Ahmad, I., Ciliary neurotrophic factor-mediated signaling regulates neuronal versus glial differentiation of retinal stem cells/progenitors by concentration-dependent recruitment of mitogen-activated protein kinase and Janus kinase-signal transducer and activator of transcription pathways in conjunction with notch signaling, Stem cells, 26, 10, 2611-2624, (2008)
[22] Delfini, M.C.; Dubrulle, J.; Malapert, P.; Chal, J.; Pourqui, O., Control of the segmentation process by graded MAPK/ERK activation in the chick embryo, Proc. natl. acad. sci. USA, 102, 32, 11343-11348, (2005)
[23] Moore, K.A.; Lemischka, I.R., Stem cells and their niches, Science, 311, 1880-1885, (2006)
[24] He, S.; Nakada, D.; Morrison, S.J., Mechanisms of stem cell self-renewal, Annu. rev. cell. dev. biol., 25, 377-406, (2009)
[25] Lane, S.W.; Gilliland, D.G., Leukemia stem cells, Semin. cancer biol., (2010)
[26] Rieger, M.A.; Hoppe, P.S.; Smejkal, B.M.; Eitelhuber, A.C.; Schroeder, T., Hematopoietic cytokines can instruct lineage choice, Science, 325, 217-218, (2009)
[27] Kaushansky, K., Lineage-specific hematopoietic growth factors, N. engl. J. med., 354, 19, 2034-2045, (2006)
[28] Ceredig, R.; Rolink, A.G.; Brown, G., Models of haematopoiesis: seeing the wood for the trees, Nat. rev. immunol., 9, 4, 293-300, (2009)
[29] Buitenhuis, M.; Verhagen, L.P.; van Deutekom, H.W.; Castor, A.; Verploegen, S.; Koenderman, L.; Jacobsen, S.E.; Coffer, P.J., Protein kinase B (c-akt) regulates hematopoietic lineage choice decisions during myelopoiesis, Blood, 111, 1, 112-121, (2008)
[30] Kimura, S.; Roberts, A.W.; Metcalf, D.; Alexander, W.S., Hematopoietic stem cell deficiencies in mice lacking c-mpl, the receptor for thrombopoietin, Proc. natl. acad. sci. USA, 95, 3, 1195-1200, (1998)
[31] Alexander, W.S.; Roberts, A.W.; Nicola, N.A.; Li, R.; Metcalf, D., Deficiencies in progenitor cells of multiple hematopoietic lineages and defective megakaryocytopoiesis in mice lacking the thrombopoietic receptor c-mpl, Blood, 87, 6, 2162-2170, (1996)
[32] Lieschke, G.J.; Grail, D.; Hodgson, G.; Metcalf, D.; Stanley, E.; Cheers, C.; Fowler, K.J.; Basu, S.; Zhan, Y.F.; Dunn, A.R., Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization, Blood, 84, 6, 1737-1746, (1994)
[33] Colmone, A.; Amorim, M.; Pontier, A.L.; Wang, S.; Jablonski, E.; Sipkins, D.A., Leukemic cells create bone marrow niches that disrupt behavior of normal hematopoietic progeitor cells, Science, 322, 1861-1865, (2008)
[34] Whichard, Z.L.; Sarkar, C.A.; Kimmel, M.; Corey, S.J., Hematopoiesis and its disorders: a systems biology approach, Blood, (2010)
[35] Graham, G.J.; Wright, E.G., Haemopoietic stem cells: their heterogeneity and regulation, Int. J. exp. pathol., 78, 4, 197-218, (1997)
[36] Ploemacher, R.E., Stem cells: characterization and measurement, Baillieres clin. haematol., 10, 3, 429-444, (1997)
[37] Hackney, J.A.; Charbord, P.; Brunk, B.P.; Stoeckert, C.J.; Lemischka, I.R.; Moore, K.A., A molecular profile of a hematopoietic stem cell niche, Proc. natl. acad. sci. USA, 99, 20, 13061-13066, (2002)
[38] Li, Z.; Li, L., Understanding hematopoietic stem-cell microenvironments, Trends biochem. sci., 31, 10, 589-595, (2006)
[39] Mayack, S.R.; Wagers, A.J., Osteolineage niche cells initiate hematopoietic stem cell mobilization, Blood, 112, 3, 519-531, (2008)
[40] Iwasaki, H.; Suda, T., Cancer stem cells and their niche, Cancer sci., 100, 7, 1166-1172, (2009)
[41] Calvi, L.M.; Adams, G.B.; Weibrecht, K.W.; Weber, J.M.; Olson, D.P.; Knight, M.C.; Martin, R.P.; Schipani, E.; Divieti, P.; Bringhurst, F.R.; Milner, L.A.; Kronenberg, H.M.; Scadden, D.T., Osteoblastic cells regulate the haematopoietic stem cell niche, Nature, 425, 841-846, (2003)
[42] Zhang, J.; Niu, C.; Ye, L.; Huang, H.; He, X.; Tong, W.G.; Ross, J.; Haug, J.; Johnson, T.; Feng, J.Q.; Harris, S.; Wiedemann, L.M.; Mishina, Y.; Li, L., Identification of the hematopoietic stem cell niche and control of the niche size, Nature, 425, 836-841, (2003)
[43] Lemischka, I.R., Stem cell biology: a view toward the future, Ann. New York acad. sci., 1044, 132-138, (2005)
[44] Korsching, S., The neurotrophic factor concept: a reexamination, J. neurosci., 13, 7, 2739-2748, (1993)
[45] McGee, E.A.; Hsueh, A.J., Initial and cyclic recruitment of Ovarian follicles, Endocr. rev., 21, 2, 200-214, (2000)
[46] Xie, Y.; Yin, T.; Wiegraebe, W.; He, X.C.; Miller, D.; Stark, D.; Perko, K.; Alexander, R.; Schwartz, J.; Grindley, J.C.; Park, J.; Haug, J.S.; Wunderlich, J.P.; Li, H.; Zhang, S.; Johnson, T.; Feldman, R.A.; Li, L., Detection of functional hematopoietic stem cell niche using real-time imaging, Nature, 457, 1, 97-102, (2009)
[47] Lo Celso, C.; Fleming, H.E.; Wu, J.W.; Zhao, C.X.; Miake-Lye, S.; Fujisaki, J.; Cote, D.; Rowe, D.W.; Lin, C.P.; Scadden, D.T., Live-animal tracking of individual hematopoietic stem/progenitor cells in their niche, Nature, 457, 1, 97-102, (2009)
[48] Koehler, A.; Schmithorst, V.; Filippi, M.D.; Ryan, M.A.; Daria, D.; Gunzer, M.; Geiger, H., Altered cellular dynamics and endosteal location of aged early hematopoieitc progenitor cells revealed by time-lapse intravital imageing in long bones, Blood, 114, 2, 290-298, (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.