zbMATH — the first resource for mathematics

A new approach to the asymptotics of Sobolev type orthogonal polynomials. (English) Zbl 1219.33006
The aim of the paper is to obtain Mehler-Heine type asymptotic formulas for the sequence of Sobolev orthogonal polynomials when the measure which appears in the continuous part is Laguerre or generalized Hermite. The key to obtain results is the transformation of the Sobolev orthogonality into a standard quasi-orthogonality. Some of the obtained results generalize results given in a paper written by the same authors [Asymptotic Anal. 66, No. 2, 103–117 (2010; Zbl 1190.33010)] and in one by R. Alvarez-Nodarse and J. J. Moreno-Balcázar [Indag. Math., New Ser. 15, No. 2, 151–165 (2004; Zbl 1064.41022)] and solve conjectures posed there and in a paper of H. Dueñas and F. Marcellán [J. Approx. Theory 162, No. 2, 421–440 (2010; Zbl 1190.33013)].

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
Full Text: DOI
[1] Alfaro, M.; Álvarez de Morales, M.; Rezola, M.L., Orthogonality of the Jacobi polynomials with negative parameters, J. comput. appl. math., 145, 379-386, (2002) · Zbl 1002.42016
[2] Alfaro, M.; López, G.; Rezola, M.L., Some properties of zeros of Sobolev-type orthogonal polynomials, J. comput. appl. math., 69, 171-179, (1996) · Zbl 0862.33005
[3] Alfaro, M.; Moreno-Balcázar, J.J.; Peña, A.; Rezola, M.L., Asymptotics for a generalization of Hermite polynomials, Asymptot. anal., 66, 103-117, (2010) · Zbl 1190.33010
[4] Álvarez-Nodarse, R.; Moreno-Balcázar, J.J., Asymptotic properties of generalized Laguerre orthogonal polynomials, Indag. math. (N.S.), 15, 151-165, (2004) · Zbl 1064.41022
[5] Chihara, T.S., An introduction to orthogonal polynomials, (1978), Gordon & Breach New York · Zbl 0389.33008
[6] Dueñas, H.; Marcellán, F., The laguerre – sobolev – type orthogonal polynomials, J. approx. theory, 162, 421-440, (2010) · Zbl 1190.33013
[7] Gonchar, A.A., On the convergence of Padé approximants for certain classe of meromorphic functions, Math. USSR sb., 26, 555-575, (1975) · Zbl 0341.30029
[8] Klambauer, G., Aspects of calculus, (1986), Springer-Verlag New York · Zbl 0585.26001
[9] Koekoek, R.; Meijer, H.G., A generalization of Laguerre polynomials, SIAM J. math. anal., 24, 768-782, (1993) · Zbl 0780.33007
[10] Kuijlaars, A.B.J.; Martínez-Finkelshtein, A.; Orive, R., Orthogonality of Jacobi polynomials with general parameters, Electron. trans. numer. anal., 19, 1-17, (2005) · Zbl 1075.33005
[11] Kuijlaars, A.B.J.; McLaughlin, K.T.-R., Riemann – hilbert analysis for Laguerre polynomials with large negative parameter, Comput. methods funct. theory, 1, 205-233, (2001) · Zbl 1035.30027
[12] Kwon, K.H.; Littlejohn, L.L., The orthogonality of the Laguerre polynomials \(\{L_n^{(- k)}(x) \}\) for a positive integer \(k\), Ann. numer. math., 2, 289-304, (1995) · Zbl 0831.33003
[13] Kwon, K.H.; Littlejohn, L.L.; Yoon, G.J., Ghost matrices and a characterization of symmetric Sobolev bilinears forms, Linear algebra appl., 431, 104-119, (2009) · Zbl 1214.15016
[14] López Lagomasino, G.; Marcellán, F.; Van Assche, W., Relative asymptotics for polynomials orthogonal with respect to a discrete Sobolev inner product, Constr. approx., 11, 107-137, (1995) · Zbl 0840.42017
[15] Marcellán, F.; Moreno-Balcázar, J.J., Asymptotics and zeros of Sobolev orthogonal polynomials on unbounded supports, Acta appl. math., 94, 163-192, (2006) · Zbl 1137.42312
[16] Riordan, J., Combinatorial identities, (1968), Wiley New York · Zbl 0194.00502
[17] Szegő, G., ()
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.