×

zbMATH — the first resource for mathematics

Pseudospectral methods for Nagumo equation. (English) Zbl 1218.65111
Summary: We present two pseudospectral methods based on Fourier series and rational Chebyshev functions for solving the Nagumo equation. In each of the two presented methods the problem is reduced to a system of ordinary differential equations that is solved by the leapfrog difference scheme and the fourth-order Runge-Kutta method, respectively. We compare the numerical solutions with the exact solution to validate the numerical methods. Numerically comparing of the two methods also will be considered.

MSC:
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35K57 Reaction-diffusion equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fitzhugh, Impulse and physiological states in models of nerve membrane, Biophysics Journal 1 pp 445– (1961) · doi:10.1016/S0006-3495(61)86902-6
[2] Nagumo, An active pulse transmission line simulating nerve axon, Proceedings of the IRE 50 pp 2061– (1962) · doi:10.1109/JRPROC.1962.288235
[3] Aronson, Multidimensional nonlinear diffusion arising in population genetics, Advances in Mathematics 30 pp 33– (1978) · Zbl 0407.92014 · doi:10.1016/0001-8708(78)90130-5
[4] Scott, Neunstor propagation on a tunnel diode loaded transmission line, Proceedings of IEEE 51 pp 240– (1963) · doi:10.1109/PROC.1963.1715
[5] Nagumo, Bistable transmission lines, Transactions on IEEE Circuit Theory 12 pp 400– (1965) · doi:10.1109/TCT.1965.1082476
[6] Pickard, On the propagation of the nervous impulse down medullated and unmedullated fibers, Journal of Theoretical Biology 11 pp 30– (1966) · doi:10.1016/0022-5193(66)90036-1
[7] Buratti, Neuristor wave forms and stability by the linear approximation, Proceedings of IEEE 56 pp 1392– (1968) · doi:10.1109/PROC.1968.6611
[8] Hodgkin, A quantitative description of membrane current and its application to conduction and excitation in nerve, Journal of Physiology 117 pp 500– (1952) · doi:10.1113/jphysiol.1952.sp004764
[9] Ramos, Exponential methods for one-dimensional reaction-diffusion equations, Applied Mathematics and Computation 170 pp 380– (2005) · Zbl 1082.65572 · doi:10.1016/j.amc.2004.12.003
[10] Ogawa, A quasi-random walk method for one-dimensional reaction-diffusion equations, Mathematics and Computers in Simulation 62 pp 487– (2003) · Zbl 1018.65013 · doi:10.1016/S0378-4754(02)00243-4
[11] Chen, Nonstandard discretizations of the generalized Nagumo reaction-diffusion equation, Numerical Methods for Partial Differential Equations 19 pp 363– (2003) · Zbl 1019.65067 · doi:10.1002/num.10048
[12] Dehghan, Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Mathematics and Computers in Simulation 71 pp 16– (2006) · Zbl 1089.65085 · doi:10.1016/j.matcom.2005.10.001
[13] Van Gorder Robert, Analytical and numerical solutions of the density dependent diffusion Nagumo equation, Physics Letters A 372 pp 5152– (2008) · Zbl 1221.92026 · doi:10.1016/j.physleta.2008.05.068
[14] Abdusalam, Analytic and approximate solutions for Nagumo telegraph reaction diffusion equation, Applied Mathematics and Computation 157 pp 515– (2004) · Zbl 1054.65104 · doi:10.1016/j.amc.2003.08.050
[15] Kaushik, Numerical analysis of a mathematical model for propagation of an electrical pulse in a neuron, Numerical Methods for Partial Differential Equation 24 pp 1055– (2008) · Zbl 1152.92005 · doi:10.1002/num.20301
[16] Khalifa Ahmed, Numerical treatment of the nerve conduction equation, International Journal of Computational Mathematics 76 (2) pp 149– (2000) · Zbl 0970.65107 · doi:10.1080/00207160008805016
[17] Rogers, A collocation-Galerkin finite element model of cardiac action potential propagation, IEEE Transactions on Biomedical Engineering 41 pp 743– (1994) · doi:10.1109/10.310090
[18] Shih, Approximate conditional symmetries and approximate solutions of the perturbed Fitzhugh-Nagumo equation, Journal of Mathematical Physics 46 (2005) · Zbl 1076.35052 · doi:10.1063/1.1839276
[19] Jackson, Error estimates for the semidiscrete Galerkin approximations of the Fitzhugh-Nagumo equations, Applied Mathematics and Computation 50 pp 93– (1992) · Zbl 0757.65125 · doi:10.1016/0096-3003(92)90013-Q
[20] Olmos, Pseudospectral method of solution of the Fitzhugh-Nagumo equation, Mathematics and Computers in Simulation 79 pp 2258– (2009) · Zbl 1166.65382 · doi:10.1016/j.matcom.2009.01.001
[21] Barkley, A model for fast computer simulation of excitable media, Physica D 49 pp 61– (1991) · doi:10.1016/0167-2789(91)90194-E
[22] Chen, Analytic solutions of the Nagumo equation, IMA Journal of Applied Mathematics 48 pp 107– (1992) · Zbl 0774.35085 · doi:10.1093/imamat/48.2.107
[23] Kawahara, Interaction of travelling fronts: an exact solution of a nonlinear diffusion equation, Physics Letters A 97 pp 311– (1983) · doi:10.1016/0375-9601(83)90648-5
[24] James, Pseudospectral methods for the Benjamin-Ono equation, Advances in Computer Methods for Partial Differential Equations VII pp 371– (1992)
[25] Canuto, Spectral Methods in Fluid Dynamics (1988) · doi:10.1007/978-3-642-84108-8
[26] Boyd, Chebyshev and Fourier Spectral Methods (2001) · Zbl 0994.65128
[27] Boyd, Spectral method using rational basis functions on an infinite interval, Journal of Computational Physics 69 pp 112– (1987) · Zbl 0615.65090 · doi:10.1016/0021-9991(87)90158-6
[28] Wang, A rational approximation and its applications to nonlinear partial differential equations on the whole line, Journal of Mathematical Analysis and Application 274 pp 374– (2002) · Zbl 1121.41303 · doi:10.1016/S0022-247X(02)00334-7
[29] Dehghan, Numerical solution of two-dimensional parabolic equation subject to nonstandard boundary specifications using the pseudospectral Legendre method, Numerical Methods for Partial Differential Equations 22 pp 1255– (2006) · Zbl 1108.65101 · doi:10.1002/num.20150
[30] Dehghan, A tau method for the one-dimensional parabolic inverse problem subject to temperature overspecification, Computers and Mathematics with Applications 52 pp 933– (2006) · Zbl 1125.65340 · doi:10.1016/j.camwa.2006.04.017
[31] Dehghan, Composite spectral method for solution of the diffusion equation with specification of energy, Numerical Methods for Partial Differential Equations 24 pp 950– (2008) · Zbl 1142.65080 · doi:10.1002/num.20299
[32] Dehghan, The numerical solution of the second Painleve equation, Numerical Methods for Partial Differential Equations 25 pp 1238– (2009) · Zbl 1172.65037 · doi:10.1002/num.20416
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.