×

zbMATH — the first resource for mathematics

On the convergence of spline collocation methods for solving fractional differential equations. (English) Zbl 1217.65154
This paper is concerned with the convergence of spline collocation solutions to a class of multi-term fractional differential equations. These results are applied to the convergence analysis of a polynomial spline collocation method for the numerical treatment of these problems. Global convergence estimates of solutions are also established. Numerical results are developed in the final part of the paper.

MSC:
65L20 Stability and convergence of numerical methods for ordinary differential equations
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
34A08 Fractional ordinary differential equations and fractional differential inclusions
65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations
65L10 Numerical solution of boundary value problems involving ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J., ()
[2] Brunner, H.; Pedas, A.; Vainikko, G., Piecewise polynomial collocation methods for linear Volterra integro-differential equations with weakly singular kernels, SIAM J. numer. anal., 39, 957-982, (2001) · Zbl 0998.65134
[3] Samko, S.G.; Kilbas, A.A.; Marichev, O.I., Fractional integrals and derivatives. theory and applications, (1993), Gordon and Breach Science Publishers Yverdon · Zbl 0818.26003
[4] Podlubny, I., Fractional differential equations, (1999), Academic Press San Diego · Zbl 0918.34010
[5] Diethelm, K., Efficient solution of multi-term fractional differential equations using P(EC)\({}^m\)E methods, Computing, 71, 305-319, (2003) · Zbl 1035.65066
[6] Diethelm, K.; Ford, N.J., Numerical solution of the bagley – torvik equation, Bit, 42, 490-507, (2002) · Zbl 1035.65067
[7] Diethelm, K.; Ford, N.J., Multi-order fractional differential equations and their numerical solution, Appl. math. comput., 154, 621-640, (2004) · Zbl 1060.65070
[8] Edwards, J.T.; Ford, N.J.; Simpson, A.C., The numerical solution of linear multi-term fractional differential equations: systems of equations, J. comput. appl. math., 148, 401-418, (2002) · Zbl 1019.65048
[9] El-Mesiry, A.E.M.; El-Sayed, A.M.A.; El-Saka, H.A.A., Numerical methods for multi-term fractional (arbitrary) orders differential equations, Appl. math. comput., 160, 683-699, (2005) · Zbl 1062.65073
[10] Ford, N.J.; Connoly, J.A., Systems-based decomposition schemes for approximate solution of multi-term fractional differential equations, J. comput. appl. math., 229, 382-391, (2009) · Zbl 1166.65066
[11] Garrappa, R., On some explicit Adams multistep methods for fractional differential equations, J. comput. appl. math., 229, 392-399, (2009) · Zbl 1171.65098
[12] Katsikadelis, J.T., Numerical solution of multi-term fractional differential equations, Z. angew. math. math., 89, 593-608, (2009) · Zbl 1175.26013
[13] Brunner, H.; van der Houven, P.J., The numerical solution of Volterra equations, (1986), North-Holland Amsterdam
[14] Lubich, C., Fractional linear multistep methods for Abel-Volterra integral equations of the second kind, Math. comp., 45, 463-469, (1985) · Zbl 0584.65090
[15] Çenesiz, Y.; Keskin, Y.; Kurnaz, A., The solution of the bagley – torvik equation with the generalized Taylor collocation method, J. franklin inst., 347, 452-466, (2010) · Zbl 1188.65107
[16] Daftardar-Gejji, V.; Jafari, H., Solving a multi-order fractional differential equation using Adomian decomposition, Appl. math. comput., 189, 541-548, (2007) · Zbl 1122.65411
[17] Momani, S.; Obibat, Z., Numerical comparison of methods for solving linear differential equations of fractional order, Chaos solitons fractals, 31, 1248-1255, (2007) · Zbl 1137.65450
[18] Blank, L., Numerical treatment of differential equations of fractional order, Nonlinear world, 4, 473-491, (1997) · Zbl 0907.65066
[19] Dubois, F.; Mengué, S., Mixed collocation for fractional differential equations, Numer. algorithms, 34, 303-311, (2003) · Zbl 1038.65059
[20] Rawashdeh, E., Numerical solution of semidifferential equations by collocation method, Appl. math. comput., 174, 869-876, (2006) · Zbl 1090.65097
[21] Rawashdeh, E., Numerical solution of fractional integro-differential equations by collocation method, Appl. math. comput., 176, 1-6, (2006) · Zbl 1100.65126
[22] Lepik, Ü., Solving fractional integral equations by the Haar wavelet method, Appl. math. comput., 214, 468-478, (2009) · Zbl 1170.65106
[23] Atkinson, K.E., ()
[24] Brunner, H., ()
[25] Pedas, A.; Tamme, E., Spline collocation method for integro-differential equations with weakly singular kernels, J. comput. appl. math., 197, 253-269, (2006) · Zbl 1104.65129
[26] Vainikko, G., ()
[27] Pedas, A.; Tamme, E., Discrete Galerkin method for Fredholm integro-differential equations with weakly singular kernels, J. comput. appl. math., 213, 111-126, (2006) · Zbl 1137.65073
[28] I. Parts, Piecewise polynomial collocation methods for solving weakly singular integro-differential equations, Ph.D. Thesis, Tartu, 2005. Available from the Internet: http://dspace.utlib.ee/bitstream/10062/851/5/parts.pdf. · Zbl 1093.65126
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.