×

zbMATH — the first resource for mathematics

Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method. (English) Zbl 1217.35152
Summary: A new generalized solitary solution of the Jaulent-Miodek equations is obtained using the Exp-function method. By a transformation, the solitary solution can be easily converted into a generalized compacton-like solution. The free parameters in the obtained generalized solutions might imply some meaningful results in physical process.

MSC:
35Q51 Soliton equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jaulent, M.; Miodek, J., Lett. math. phys., 1, 243, (1976)
[2] Ozer, H.T.; Salihoglu, S., Chaos solitons fractals, 33, 4, 1417, (2007)
[3] Zhang, J.L.; Wang, M.L.; Li, X.R., Chaos solitons fractals, 33, 5, 1450, (2007)
[4] Zhu, J.M.; Ma, Z.Y., Chaos solitons fractals, 33, 3, 958, (2007)
[5] Zhou, R., J. math. phys., 38, 2535, (1997)
[6] Fan, E., Chaos solitons fractals, 16, 819, (2003)
[7] He, J.H.; Wu, X.H., Chaos solitons fractals, 29, 1, 108, (2006)
[8] Chen, J.B.; Geng, X.G., Chaos solitons fractals, 30, 4, 797, (2006)
[9] Wazwaz, A.-M., Phys. lett. A, 366, 1-2, 85, (2007)
[10] J.H. He, Non-Perturbative Method for Strongly Nonlinear Problems, Dissertation, De-Verlag im internet GmbH, Berlin, 2006
[11] He, J.H.; He, J.H., Int. J. mod. phys. B, Int. J. mod. phys. B, 20, 18, 2561, (2006)
[12] Ghorbani, A.; Saberi-Nadjafi, J., Int. J. nonlinear sci. numer. simul., 8, 2, 229, (2007)
[13] He, J.H., Int. J. non-linear mech., 35, 1, 37, (2000)
[14] He, J.H., Int. J. nonliner sci. numer. simul., 6, 2, 207, (2005)
[15] Ganji, D.D.; Jannatabadi, M.; Mohseni, E., J. comput. appl. math., 207, 1, 35, (2007)
[16] Odibat, Z.M.; Momani, S., Int. J. nonlinear sci. numer. simul., 7, 1, 27, (2006)
[17] Bildik, N.; Konuralp, A., Int. J. nonlinear sci. numer. simul., 7, 1, 65, (2006)
[18] Yusufoglu, E., Int. J. nonlinear sci. numer. simul., 8, 2, 153, (2007)
[19] Tari, H.; Ganji, D.D.; Rostamian, M., Int. J. nonlinear sci. numer. simul., 8, 2, 203, (2007)
[20] Ozis, T.; Yildirim, A., Int. J. nonlinear sci. numer. simul., 8, 2, 243, (2007)
[21] Belendez, A.; Hernandez, A.; Belendez, T., Int. J. nonlinear sci. numer. simul., 8, 1, 79, (2007)
[22] Ariel, P.D.; Hayat, T.; Asghar, S., Int. J. nonlinear sci. numer. simul., 7, 4, 399, (2006)
[23] Ozis, T.; Yildirim, A., Int. J. nonlinear sci. numer. simul., 8, 2, 239, (2007)
[24] Ghori, Q.K.; Ahmed, M.; Siddiqui, A.M., Int. J. nonlinear sci. numer. simul., 8, 2, 179, (2007)
[25] Rana, M.A.; Siddiqui, A.M.; Ghori, Q.K., Int. J. nonlinear sci. numer. simul., 8, 2, 185, (2007)
[26] Ganji, D.D.; Sadighi, A., Int. J. nonlinear sci. numer. simul., 7, 4, 411, (2006)
[27] Kaya, D.; El-Sayed, S., Phys. lett. A, 318, 345, (2003)
[28] Bo, T.L.; Xie, L.; Zheng, X.J., Int. J. nonlinear sci. numer. simul., 8, 2, 223, (2007)
[29] Tlelo-Cuautle, E.; Munoz-Pacheco, J.M., Int. J. nonlinear sci. numer. simul., 8, 2, 249, (2007)
[30] Zeng, Y.C.; Wu, Y.; Pei, Z.G., Int. J. nonlinear sci. numer. simul., 7, 4, 385, (2006)
[31] He, J.H.; Wu, X.H., Chaos solitons fractals, 30, 3, 700, (2006)
[32] He, J.H.; Abdou, M.A., Chaos solitons fractals, 34, 5, 1421, (2007)
[33] Wu, X.H.; He, J.H., Comput. math. appl., 54, 966, (2007)
[34] Bekir, A.; Boz, A., Int. J. nonlinear sci. numer. simul., 8, 505, (2007)
[35] Zhu, S.-D., Int. J. nonlinear sci. numer. simul., 8, 3, 461, (2007)
[36] Zhu, S.-D., Int. J. nonlinear sci. numer. simul., 8, 3, 465, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.