×

zbMATH — the first resource for mathematics

A Jacobi dual-Petrov-Galerkin method for solving some odd-order ordinary differential equations. (English) Zbl 1216.65086
Summary: A Jacobi dual-Petrov-Galerkin (JDPG) method is introduced and used for solving fully integrated reformulations of third- and fifth-order ordinary differential equations (ODEs) with constant coefficients. The reformulated equation for the \(J\)-th order ODE involves \(n\)-fold indefinite integrals for \(n = 1, \dots, J\). The extension of the JDPG method to ODEs with polynomial coefficients is treated using Jacobi-Gauss-Lobatto quadrature. Numerical results with comparisons are given to confirm the reliability of the proposed method for some constant and polynomial coefficients ODEs.

MSC:
65L05 Numerical methods for initial value problems
34A30 Linear ordinary differential equations and systems, general
65L60 Finite element, Rayleigh-Ritz, Galerkin and collocation methods for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] J. P. Boyd, Chebyshev and Fourier Spectral Methods, Dover, Mineola, NY, USA, 2nd edition, 2001. · Zbl 0994.65128
[2] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, Springer, New York, NY, USA, 1988. · Zbl 0658.76001
[3] Y. Chen and T. Tang, “Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel,” Mathematics of Computation, vol. 79, no. 269, pp. 147-167, 2010. · Zbl 1207.65157 · doi:10.1090/S0025-5718-09-02269-8
[4] E. H. Doha and A. H. Bhrawy, “Efficient spectral-Galerkin algorithms for direct solution for second-order differential equations using Jacobi polynomials,” Numerical Algorithms, vol. 42, no. 2, pp. 137-164, 2006. · Zbl 1103.65119 · doi:10.1007/s11075-006-9034-6
[5] P. W. Livermore and G. R. Ierley, “Quasi- norm orthogonal Galerkin expansions in sums of Jacobi polynomials. Orthogonal expansions,” Numerical Algorithms, vol. 54, no. 4, pp. 533-569, 2010. · Zbl 1197.65027 · doi:10.1007/s11075-009-9353-5
[6] K. Aghigh, M. Masjed-Jamei, and M. Dehghan, “A survey on third and fourth kind of Chebyshev polynomials and their applications,” Applied Mathematics and Computation, vol. 199, no. 1, pp. 2-12, 2008. · Zbl 1134.33300 · doi:10.1016/j.amc.2007.09.018
[7] E. H. Doha and A. H. Bhrawy, “Efficient spectral-Galerkin algorithms for direct solution of the integrated forms of second-order equations using ultraspherical polynomials,” The ANZIAM Journal, vol. 48, no. 3, pp. 361-386, 2007. · Zbl 1138.65104 · doi:10.1017/S1446181100003540
[8] M. Fernandino, C. A. Dorao, and H. A. Jakobsen, “Jacobi galerkin spectral method for cylindrical and spherical geometries,” Chemical Engineering Science, vol. 62, no. 23, pp. 6777-6783, 2007. · doi:10.1016/j.ces.2007.07.062
[9] W. Heinrichs, “Spectral approximation of third-order problems,” Journal of Scientific Computing, vol. 14, no. 3, pp. 275-289, 1999. · Zbl 0953.65072 · doi:10.1023/A:1023221619567
[10] P. W. Livermore, “Galerkin orthogonal polynomials,” Journal of Computational Physics, vol. 229, no. 6, pp. 2046-2060, 2010. · Zbl 1197.65027 · doi:10.1007/s11075-009-9353-5
[11] A. R. Aftabizadeh, C. P. Gupta, and J.-M. Xu, “Existence and uniqueness theorems for three-point boundary value problems,” SIAM Journal on Mathematical Analysis, vol. 20, no. 3, pp. 716-726, 1989. · Zbl 0704.34019 · doi:10.1137/0520049
[12] A. R. Aftabizadeh and K. Deimling, “A three-point boundary value problem,” Differential and Integral Equations, vol. 4, no. 1, pp. 189-194, 1991. · Zbl 0723.34016
[13] F. Bernis and L. A. Peletier, “Two problems from draining flows involving third-order ordinary differential equations,” SIAM Journal on Mathematical Analysis, vol. 27, no. 2, pp. 515-527, 1996. · Zbl 0845.34033 · doi:10.1137/S0036141093260847
[14] A. Boucherif, S. M. Bouguima, N. Al-Malki, and Z. Benbouziane, “Third order differential equations with integral boundary conditions,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 12, pp. e1736-e1743, 2009. · Zbl 1238.34031 · doi:10.1016/j.na.2009.02.055
[15] A. R. Davies, A. Karageorghis, and T. N. Phillips, “Spectral Glarkien methods for the primary two-point boundary-value problems in modeling viscoelastic flows, Internat,” International Journal for Numerical Methods in Engineering, vol. 26, pp. 647-662, 1988. · Zbl 0635.73091 · doi:10.1002/nme.1620260309
[16] A. Karageorghis, T. N. Phillips, and A. R. Davies, “Spectral collocation methods for the primary two-point boundary-value problems in modeling viscoelastic flows,” International Journal for Numerical Methods in Engineering, vol. 26, no. 4, pp. 805-813, 1988. · Zbl 0637.76008 · doi:10.1002/nme.1620260404
[17] G. L. Liu, “New research directions in singular perturbation theory: artificial parameter approach and inverse-perturbation technique,” in Proceedings of the 7th Conference on Modern Mathematics and Mechanics, Shanghai, China, 1997.
[18] R. P. Agarwal, Boundary Value Problems for Higher Order Differential Equations, World Scientific, Teaneck, NJ, USA, 1986. · Zbl 0681.76121
[19] E. H. Doha, “Explicit formulae for the coefficients of integrated expansions of Jacobi polynomials and their integrals,” Integral Transforms and Special Functions, vol. 14, no. 1, pp. 69-86, 2003. · Zbl 1051.33004 · doi:10.1080/10652460304541
[20] E. H. Doha and A. H. Bhrawy, “A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations,” Numerical Methods for Partial Differential Equations, vol. 25, no. 3, pp. 712-739, 2009. · Zbl 1170.65099 · doi:10.1002/num.20369
[21] B.-Y. Guo and L.-l. Wang, “Jacobi interpolation approximations and their applications to singular differential equations,” Advances in Computational Mathematics, vol. 14, no. 3, pp. 227-276, 2001. · Zbl 0984.41004 · doi:10.1023/A:1016681018268
[22] E. H. Doha, “On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials,” Journal of Physics A, vol. 37, no. 3, pp. 657-675, 2004. · Zbl 1055.33007 · doi:10.1088/0305-4470/37/3/010
[23] E. H. Doha and A. H. Bhrawy, “Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials,” Applied Numerical Mathematics, vol. 58, no. 8, pp. 1224-1244, 2008. · Zbl 1152.65112 · doi:10.1016/j.apnum.2007.07.001
[24] B.-Y. Guo and L.-l. Wang, “Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces,” Journal of Approximation Theory, vol. 128, no. 1, pp. 1-41, 2004. · Zbl 1057.41003 · doi:10.1016/j.jat.2004.03.008
[25] G. N. Watson, “A note on generalized hypergeometric series,” Proceedings London Mathematical Society, vol. 23, pp. 13-15, 1925. · JFM 51.0283.04
[26] Y. L. Luke, Mathematical Functions and Their Approximations, Academic Press, New York, NY, USA, 1975. · Zbl 0318.33001
[27] E. H. Doha, A. H. Bhrawy, and R. M. Hafez, “A Jacobi-Jacobi dual-Petrov-Galerkin method for third- and fifth-order differential equations,” Mathematical and Computer Modelling, vol. 53, no. 9-10, pp. 1820-1832, 2011. · Zbl 1219.65077 · doi:10.1016/j.mcm.2011.01.002
[28] A. H. Bhrawy and S. I. El-Soubhy, “Jacobi spectral Galerkin method for the integrated forms of second-order differential equations,” Applied Mathematics and Computation, vol. 217, no. 6, pp. 2684-2697, 2010. · Zbl 1204.65132 · doi:10.1016/j.amc.2010.08.006
[29] S. S. Siddiqi, G. Akram, and S. A. Malik, “Nonpolynomial sextic spline method for the solution along with convergence of linear special case fifth-order two-point value problems,” Applied Mathematics and Computation, vol. 190, no. 1, pp. 532-541, 2007. · Zbl 1125.65072 · doi:10.1016/j.amc.2007.01.071
[30] X. Lv and M. Cui, “An efficient computational method for linear fifth-order two-point boundary value problems,” Journal of Computational and Applied Mathematics, vol. 234, no. 5, pp. 1551-1558, 2010. · Zbl 1191.65103 · doi:10.1016/j.cam.2010.02.036
[31] H. N. \cCaglar, S. H. \cCaglar, and E. H. Twizell, “The numerical solution of fifth-order boundary value problems with sixth-degree -spline functions,” Applied Mathematics Letters, vol. 12, no. 5, pp. 25-30, 1999. · Zbl 0941.65073 · doi:10.1016/S0893-9659(99)00052-X
[32] S. S. Siddiqi and G. Akram, “Sextic spline solutions of fifth order boundary value problems,” Applied Mathematics Letters, vol. 20, no. 5, pp. 591-597, 2007. · Zbl 1125.65071 · doi:10.1016/j.aml.2006.06.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.