×

zbMATH — the first resource for mathematics

A phase-field approach for minimizing the area of triply periodic surfaces with volume constraint. (English) Zbl 1216.65021
Summary: We present an accurate and efficient algorithm to generate constant mean curvature surfaces with volume constraint using a phase-field model. We implement our proposed algorithm using an unconditionally gradient stable nonlinear splitting scheme. Starting from the periodic nodal surface approximation to minimal surfaces, we can generate various constant mean curvature surfaces with given volume fractions. We generate and study the Schwarz primitive, Schwarz diamond, and Schoen gyroid surfaces with various volume fractions. This technique for generating constant mean curvature surfaces can be used to design biomedical scaffolds with optimal mechanical and biomorphic properties.

MSC:
65D17 Computer-aided design (modeling of curves and surfaces)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexandrov, O.; Santosa, F., J. comput. phys., 204, 121, (2005)
[2] Brakke, K., Experiment. math., 1, 141, (1992)
[3] Burden, R.L.; Faires, J.D., Numerical analysis, (2004), Thomson
[4] do Carmo, M., Differential geometry of curves and surfaces, (1976), Prentice Hall · Zbl 0326.53001
[5] Choksi, R.; Sternberg, P., Interfaces free bound., 8, 371, (2006)
[6] Du, Q.; Liu, C.; Ryham, R.; Wang, X., Nonlinearity, 18, 1249, (2005)
[7] Eyre, D., An unconditionally stable one-step scheme for gradient systems
[8] D. Eyre, in: Computational and Mathematical Models of Microstructural Evolution, 1998, p. 39
[9] Gabbrielli, R.; Turner, I.G.; Bowen, C.R., Key eng. mater. bioceramics, 20, 903, (2008)
[10] Gandy, P.J.F.; Bardhan, S.; Mackay, A.L.; Klinowski, J., Chem. phys. lett., 336, 187, (2001)
[11] Góźgź, W.T.; Holyst, R., Phys. rev. lett., 76, 2726, (1996)
[12] Greer, J.B.; Bertozzi, A.L.; Sapiro, G., J. comput. phys., 216, 216, (2006)
[13] Grosse-Brauckmann, K., J. colloid interface sci., 187, 418, (1997)
[14] Hauswirth, L.; Perez, J.; Romon, P.; Ros, A., Trans. amer. math. soc., 356, 2025, (2004)
[15] Hildebrandt, S.; Tromba, A., Mathematics and optimal form, (1985), Scientific American Library
[16] Hyde, S.T., Curr. opin. solid state mater. sci., 1, 653, (1996)
[17] Jung, Y.; Chu, K.T.; Torquato, S., J. comput. phys., 223, 711, (2007)
[18] Jung, Y.; Torquato, S., Phys. rev. E, 72, 056319-1, (2005)
[19] Kim, J.; Bae, H., J. Korean phys. soc., 53, 672, (2008)
[20] Klinowski, J.; Mackay, A.L.; Terrones, H., Phil. trans. R. soc. lond. A, 354, 1975, (1996)
[21] Lord, E.A.; Mackay, A.L., Current sci., 85, 346, (2003)
[22] Mackay, A.L., Proc. R. soc. lond. A, 442, 47, (1993)
[23] Mackay, A.L., Chem. phys. lett., 221, 317, (1994)
[24] National Research Council, Biomolecular self-assembling materials: scientific and technological frontiers, (1996), National Academies Press
[25] Nitsche, J.C.C., Introduction, fundamentals, geometry and basic boundary value problems, Lectures on minimal surfaces, vol. 1, (1989), Cambridge University Press
[26] Osher, S.J.; Fedkiw, R.P., Level set methods and dynamic implicit surfaces, (2002), Springer-Verlag
[27] Osher, S.J.; Santosa, F., J. comput. phys., 171, 272, (2001)
[28] Rajagopalan, S.; Robb, R.A., Lecture notes in comput. sci., 3749, 794, (2005)
[29] Ros, A., The isoperimetric problem, () · Zbl 1125.49034
[30] von Schnering, H.G.; Nesper, R., Z. phys. B: condens. matter, 83, 407, (1991)
[31] Schwarz, U.S.; Gompper, G., Phys. rev. E, 59, 5528, (1999)
[32] Sethian, J.A., Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, (1999), Cambridge University Press · Zbl 0973.76003
[33] Siem, E.J.; Carter, W.C., Interface sci., 10, 287, (2002)
[34] Trottenberg, U.; Oosterlee, C.; Schüller, A., Multigrid, (2001), Academic Press
[35] Vollmayr-Lee, B.P.; Rutenberg, A.D., Phys. rev. E, 68, 066703-1, (2003)
[36] Wang, Y., Computer-aided design, 39, 179, (2007)
[37] Xu, G.; Zhang, Q., Computer-aided design, 39, 342, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.