×

Dynamical behaviors of a delayed chemostat model with impulsive diffusion on nutrients. (English) Zbl 1216.34083

Summary: A chemostat model with delayed response in growth and impulsive diffusion of nutrients is considered. Using the discrete dynamical system determined by the stroboscopic map, we obtain a microorganism-extinction periodic solution, which is globally attractive. The permanent condition of the investigated system is also obtained by the theory of impulsive delay differential equation. Finally, a numerical analysis illustrates the results.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K25 Asymptotic theory of functional-differential equations
92D25 Population dynamics (general)
34K45 Functional-differential equations with impulses
34K13 Periodic solutions to functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Smith, H., Waltman, P.: Theory of Chemostat. Cambridge University Press, Cambridge (1995) · Zbl 0860.92031
[2] Smith, H., Waltman, P.: Perturbation of a globally stable steady state. Proc. Am. Math. Soc. 127(2), 447–453 (1999) · Zbl 0924.58087 · doi:10.1090/S0002-9939-99-04768-1
[3] Yang, K.: Delay Differential Equation with Application in Population Dynamics. Academic Press, Boston (1993) · Zbl 0777.34002
[4] Freedman, H.I., So, J.W.H., Waltman, P.: Chemostat competition with delays. In: Eisenfeld, J., Levine, D.S. (eds.) Biomedical Modelling and Simulation, pp. 171–173. World Scientific, Singapore (1989) · Zbl 0676.92013
[5] Ellermeyer, S.F.: Competition in the chemostat: global asymptotic behavior of a model with delayed response in growth. SIAM J. Appl. Math. 154, 456–465 (1994) · Zbl 0794.92023 · doi:10.1137/S003613999222522X
[6] Caltagirone, L.E., Doutt, R.L.: Global behavior of an SEIRS epidemic model with delays. The history of the vedalia beetle importation to California and its impact on the development of biological control. Annu. Rev. Entomol. 34, 1–16 (1989) · doi:10.1146/annurev.en.34.010189.000245
[7] Hsu, S.B., Waltman, P., Ellermeyer, S.F.: A remark on the global asymptotic stability of a dynamical system modeling two species competition. Hiroshima Math. J. 24, 435–445 (1994) · Zbl 0806.92016
[8] Ellermeyer, S.F.: Ghoochan: A theoretical and empirical investigation of delayed growth response in the continuous culture of bacteria. J. Theor. Biol. 222, 485–494 (2003)
[9] Bush, A.W., Cook, A.E.: The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater. J. Theor. Biol. 63, 385–395 (1975) · doi:10.1016/0022-5193(76)90041-2
[10] Bulert, G.L., Hsu, S.B., Waltman, P.: A mathematical model of the chemostat with periodic washout rate. SIAM J. Appl. Math. 45, 435–449 (1985) · Zbl 0584.92027 · doi:10.1137/0145025
[11] Hale, J.K., Somolinas, A.M.: Competition for fluctuating nutrent. J. Math. Biol. 18, 255–280 (1983) · Zbl 0525.92024 · doi:10.1007/BF00276091
[12] Hsu, S.B., Hubbell, S.P., Waltman, P.: A mathematical theory for single nutrent competition in continuous cultures of microorganisms. SIAM J. Appl. Math. 32, 366–383 (1977) · Zbl 0354.92033 · doi:10.1137/0132030
[13] Wolkowicz, G.S.K., Zhao, X.Q.: N-species competition in a periodic chemostat. Differ. Integral Equ. 11, 465–491 (1998) · Zbl 1005.92027
[14] Wang, L., Wolkowicz, G.S.K.: A delayed chemostat model with general nonmonotone response functions and differential removal rates. J. Math. Anal. Appl. 321, 452–468 (2006) · Zbl 1092.92048 · doi:10.1016/j.jmaa.2005.08.014
[15] Bainov, D., Simeonov, P.: Impulsive differential equations: periodic solutions and applications. Longman 66 (1993) · Zbl 0815.34001
[16] Jiao, J., Chen, L.: Global attractivity of a stage-structure variable coefficients predator-prey system with time delay and impulsive perturbations on predators. Int. J. Biomath. 1, 197–208 (2008) · Zbl 1155.92355 · doi:10.1142/S1793524508000163
[17] Funasaki, E., Kot, M.: Invasion and chaos in a Lotka-Volterra system. Theor. Popul. Biol. 44, 203–224 (1993) · Zbl 0782.92020 · doi:10.1006/tpbi.1993.1026
[18] Smith, R.J., Wolkowicz, G.S.K.: Analysis of a model of the nutrent driven self-cycling fermentation process. Dyn. Contin. Disctete Impuls Syst. Ser. B 11, 239–265 (2004) · Zbl 1069.34121
[19] Jiao, J., Chen, L., Cai, S.: An SEIRS epidemic model with two delays and pulse vaccination. J. Syst. Sci. Complex. 28(4), 385–394 (2008) · Zbl 1203.93016
[20] Levin, S.A., Segel, L.A.: An hypothesis for the origin of planktonic patchiness. Nature 259, 659 (1976) · doi:10.1038/259659a0
[21] Mimura, M.: Asymptotic behavior of a parabolic system related to a planktonic prey and predator model. SIAM J. Appl. Math. 37, 499–512 (1979) · Zbl 0426.35017 · doi:10.1137/0137039
[22] Okubo, A.: Diffusion and Ecological Problems: Mathematical Models. Springer, Berlin (1980) · Zbl 0422.92025
[23] Freedman, H.I., Ruan, S.: On reaction-diffusion systems of zooplankton-phytoplankton-nutrient models. Differ. Equ. Dyn. Syst. 2, 49–64 (1994) · Zbl 0868.92026
[24] Ruan, S.: Turing instability and traveling waves in diffusive plankton models with delayed nutrient recycling. IMA J. Appl. Math. 61, 15–32 (1998) · Zbl 0911.92028 · doi:10.1093/imamat/61.1.15
[25] Smith, H.L.: Cooperative systems of differential equations with concave nonlinearities. Nonlinear Anal. 10, 1037–1052 (1986) · Zbl 0612.34035 · doi:10.1016/0362-546X(86)90087-8
[26] Wang, L.M., Chen, L.S., et al.: Impulsive diffusion in single species model. Chaos Solitons Fractals 33, 1213–1219 (2007) · Zbl 1131.92071 · doi:10.1016/j.chaos.2006.01.102
[27] Jiao, J., Chen, L: Dynamical analysis of a chemostat model with delayed response in growth and pulse input in polluted environment. J. Math. Chem. 46, 502–513 (2009) · Zbl 1196.92041 · doi:10.1007/s10910-008-9474-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.