×

zbMATH — the first resource for mathematics

Counting all bent functions in dimension eight 99270589265934370305785861242880. (English) Zbl 1215.94059
Summary: Based on the classification of the homogeneous Boolean functions of degree 4 in 8 variables, we present the strategy that we used to count the number of all bent functions in dimension 8. There are \(99270589265934370305785861242880 \approx 2^{106}\) such functions in total. Furthermore, we show that most of the bent functions in dimension 8 are nonequivalent to Maiorana-McFarland and partial spread functions.

MSC:
94D10 Boolean functions
06E30 Boolean functions
65T50 Numerical methods for discrete and fast Fourier transforms
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brier E., Langevin P.: Classification of the cubic forms of nine variables. In: PIEEE Information Theory Workshop La Sorbonne, Paris, France (2003).
[2] Carlet C., Klapper A.: Upper bounds on the numbers of resilient functions and of bent functions. In: Werkgemeeschap voor Informatie- en Communicatietheorie, pp. 307–314 (2002).
[3] Dillon J.F.: Elementary Hadamard Difference sets. PhD thesis, University of Maryland (1974). · Zbl 0346.05003
[4] Hou X.: GL(m, 2) acting on R(r, m)/R(r 1, m). Discret. Math. 149(1–3), 99–122 (1996) · Zbl 0852.94020
[5] Hou X., Langevin P.: Results on bent functions. J. Comb. Theory A 80(2), 232–246 (1997) · Zbl 0896.05011
[6] Hou X.: Cubic bent functions. Discret. Math. 189(1–3), 149–161 (1998) · Zbl 0949.94003
[7] Langevin P., Leander G.: Classification of the quartic forms of eight variables. In: Boolean Functions in Cryptology and Information Security, Svenigorod, Russia September (2007). · Zbl 1202.06009
[8] Langevin P., Leander G.: Classification of the quartic forms of eight variables. In: The Output of the Numerical Experiment, July 2007. http://www.univ-tln.fr/langevin/projects/quartics.html · Zbl 1202.06009
[9] Langevin P., Rabizzoni P., Véron P., Zanotti J.-P.: On the number of bent functions with 8 variables. In: Second International Workshop on Boolean Functions: Cryptography and Applications, pp. 125–135 (2006).
[10] Maiorana J.A.: A classification of the cosets of the Reed-Muller code r(1, 6). Math. Comput. 57(195), 403–414 (1991) · Zbl 0724.94016
[11] McKay B.D.: Knight’s tours of an 8 {\(\times\)} 8 chessboard. Technical Report. TR-CS-97-03. Department of Computer Science, Australian National University (1997).
[12] Rothaus O.S.: On ”bent” functions. J. Comb. Theory A 20(3), 300–305 (1976) · Zbl 0336.12012
[13] Sugita T., Kasami T., Fujiwara T.: Weight distributions of the third and fifth order Reed-Muller codes of length 512. Nara Institute of Science and Technology Report, February (1996). · Zbl 0862.94018
[14] Xiang-Dong H., Philippe L.: Counting partial spread bent functions. preprint (2009).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.