×

zbMATH — the first resource for mathematics

Permutation orbifolds of heterotic Gepner models. (English) Zbl 1215.81091
Summary: We study orbifolds by permutations of two identical \({\mathcal N}=2\) minimal models within the Gepner construction of four-dimensional heterotic strings. This is done using the new \({\mathcal N}=2\) supersymmetric permutation orbifold building blocks we have recently developed. We compare our results with the old method of modding out the full string partition function. The overlap between these two approaches is surprisingly small, but whenever a comparison can be made we find complete agreement. The use of permutation building blocks allows us to use the complete arsenal of simple current techniques that is available for standard Gepner models, vastly extending what could previously be done for permutation orbifolds. In particular, we consider (0,2) models, breaking of \(SO(10)\) to subgroups, weight-lifting for the minimal models and B-L lifting. Some previously observed phenomena, for example concerning family number quantization, extend to this new class as well, and in the lifted models three-family models occur with abundance comparable to two or four.

MSC:
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T60 Supersymmetric field theories in quantum mechanics
57R18 Topology and geometry of orbifolds
PDF BibTeX Cite
Full Text: DOI arXiv
References:
[1] Gross, D.J.; Harvey, J.A.; Martinec, E.J.; Rohm, R., The heterotic string, Phys. rev. lett., 54, 502-505, (1985)
[2] Belavin, A.A.; Polyakov, A.M.; Zamolodchikov, A.B., Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. phys. B, 241, 333, (1984) · Zbl 0661.17013
[3] Gepner, D., Space-time supersymmetry in compactified string theory and superconformal models, Nucl. phys. B, 296, 757, (1988)
[4] Gepner, D., Exactly solvable string compactifications on manifolds of \(\operatorname{SU}(N)\) holonomy, Phys. lett. B, 199, 380, (1987)
[5] Kazama, Y.; Suzuki, H., New \(N = 2\) superconformal field theories and superstring compactification, Nucl. phys. B, 321, 232, (1989)
[6] Klemm, A.; Schmidt, M.G., Orbifolds by cyclic permutations of tensor product conformal field theories, Phys. lett. B, 245, 53, (1990)
[7] Fuchs, J.; Klemm, A.; Schmidt, M.G., Orbifolds by cyclic permutations in Gepner type superstrings and in the corresponding Calabi-Yau manifolds, Ann. phys., 214, 221, (1992) · Zbl 0758.53049
[8] Schellekens, A.N.; Yankielowicz, S., Extended chiral algebras and modular invariant partition functions, Nucl. phys. B, 327, 673, (1989)
[9] Schellekens, A.N.; Yankielowicz, S., Modular invariants from simple currents: an explicit proof, Phys. lett. B, 227, 387, (1989)
[10] Intriligator, K.A., Bonus symmetry in conformal field theory, Nucl. phys. B, 332, 541, (1990)
[11] Gato-Rivera, B.; Schellekens, A.N., Complete classification of simple current modular invariants for \((Z(p))^k\), Commun. math. phys., 145, 85, (1992) · Zbl 0751.17026
[12] Kreuzer, M.; Schellekens, A.N., Simple currents versus orbifolds with discrete torsion: A complete classification, Nucl. phys. B, 411, 97, (1994) · Zbl 0921.17010
[13] Schellekens, A.N.; Yankielowicz, S., New modular invariants for \(N = 2\) tensor products and four-dimensional strings, Nucl. phys. B, 330, 103, (1990) · Zbl 0746.17025
[14] Font, A.; Ibanez, L.E.; Quevedo, F., String compactifications and \(N = 2\) superconformal coset constructions, Phys. lett. B, 224, 79, (1989)
[15] Schellekens, A.N., Field identification fixed points in \(N = 2\) coset theories, Nucl. phys. B, 366, 27, (1991)
[16] Fuchs, J.; Schweigert, C., Non-Hermitian symmetric \(N = 2\) coset models, Poincaré polynomials, and string compactification, Nucl. phys. B, 411, 181-222, (1994) · Zbl 1049.81591
[17] Aldazabal, G.; Allekotte, I.; Andres, E.; Nunez, C.A., Cyclic permutations in kazama-Suzuki string models, Int. J. mod. phys. A, 10, 3283-3302, (1995) · Zbl 1044.81688
[18] Borisov, L.; Halpern, M.B.; Schweigert, C., Systematic approach to cyclic orbifolds, Int. J. mod. phys. A, 13, 125, (1998) · Zbl 1002.17014
[19] Maio, M.; Schellekens, A.N., Fixed point resolution in extensions of permutation orbifolds, Nucl. phys. B, 821, 577, (2009) · Zbl 1203.81148
[20] Maio, M.; Schellekens, A.N., Complete analysis of extensions of \(D(n)_1\) permutation orbifolds · Zbl 1203.81079
[21] Maio, M.; Schellekens, A.N., Formula for fixed point resolution matrix of permutation orbifolds, Nucl. phys. B, 830, 116, (2010) · Zbl 1203.81149
[22] Maio, M.; Schellekens, A.N., Permutation orbifold of \(N = 2\) supersymmetric minimal models · Zbl 1207.81187
[23] Gato-Rivera, B.; Schellekens, A.N., Heterotic weight lifting, Nucl. phys. B, 828, 375, (2010) · Zbl 1203.81147
[24] Gato-Rivera, B.; Schellekens, A.N., Asymmetric Gepner models (revisited), Nucl. phys. B, 841, 100, (2010) · Zbl 1207.81119
[25] Gato-Rivera, B.; Schellekens, A.N.; Schellekens, A.N., Asymmetric Gepner models II. heterotic weight lifting · Zbl 1208.81161
[26] Gato-Rivera, B.; Schellekens, A.N., Asymmetric Gepner models III. B-L lifting · Zbl 1215.81086
[27] B. Gato-Rivera, A.N. Schellekens, Asymmetric Gepner models IV. E8 breaking, in preparation. · Zbl 1207.81119
[28] Schellekens, A.N.; Yankielowicz, S., Field identification fixed points in the coset construction, Nucl. phys. B, 334, 67, (1990) · Zbl 0746.17025
[29] Schellekens, A.N.; Yankielowicz, S., Simple currents, modular invariants and fixed points, Int. J. mod. phys. A, 5, 2903, (1990) · Zbl 0706.17012
[30] Fuchs, J.; Schellekens, A.N.; Schweigert, C., A matrix S for all simple current extensions, Nucl. phys. B, 473, 323, (1996) · Zbl 0921.17014
[31] Fuchs, J.; Schellekens, B.; Schweigert, C., From Dynkin diagram symmetries to fixed point structures, Commun. math. phys., 180, 39, (1996) · Zbl 0863.17020
[32] Schellekens, A.N., Fixed point resolution in extended WZW-models, Nucl. phys. B, 558, 484, (1999) · Zbl 1068.81600
[33] Fuchs, J.; Schellekens, B.; Schweigert, C., The resolution of field identification fixed points in diagonal coset theories, Nucl. phys. B, 461, 371-406, (1996) · Zbl 0921.17013
[34] Pradisi, G.; Sagnotti, A.; Stanev, Y.S., Completeness conditions for boundary operators in 2-D conformal field theory, Phys. lett. B, 381, 97-104, (1996) · Zbl 0979.81585
[35] Pradisi, G.; Sagnotti, A.; Stanev, Y.S., The open descendants of nondiagonal SU(2) WZW models, Phys. lett. B, 356, 230-238, (1995)
[36] Fuchs, J.; Huiszoon, L.R.; Schellekens, A.N.; Schweigert, C.; Walcher, J., Boundaries, crosscaps and simple currents, Phys. lett. B, 495, 427-434, (2000) · Zbl 0976.81090
[37] Lerche, W.; Lüst, D.; Schellekens, A.N., Chiral four-dimensional heterotic strings from selfdual lattices, Nucl. phys. B, 287, 477, (1987)
[38] Gepner, D., String theory on Calabi-Yau manifolds: the three generations case
[39] www.nikhef.nl/ t58, page “Hodge numbers”.
[40] Schellekens, A.N., Electric charge quantization in string theory, Phys. lett. B, 237, 363, (1990)
[41] Wen, X.G.; Witten, E., Electric and magnetic charges in superstring models, Nucl. phys. B, 261, 651, (1985)
[42] Athanasiu, G.G.; Atick, J.J.; Dine, M.; Fischler, W., Remarks on Wilson line, modular invariance and possible string relics in Calabi-Yau compactifications, Phys. lett. B, 214, 55, (1988)
[43] Perl, M.L.; Lee, E.R.; Loomba, D., Searches for fractionally charged particles, Ann. rev. nucl. part. sci., 59, 47, (2009)
[44] Assel, B.; Christodoulides, K.; Faraggi, A.E.; Kounnas, C.; Rizos, J.; Rizos, J.; Assel, B.; Christodoulides, K.; Faraggi, A.E.; Kounnas, C.; Rizos, J., Classification of heterotic Pati-Salam models, Phys. lett. B, 683, 306, (2010)
[45] Witten, E., Symmetry breaking patterns in superstring models, Nucl. phys. B, 258, 75, (1985)
[46] Blaszczyk, M.; Nibbelink, S.G.; Ratz, M.; Ruehle, F.; Trapletti, M.; Vaudrevange, P.K.S., A \(\mathbb{Z}_2 \times \mathbb{Z}_2\) standard model, Phys. lett. B, 683, 340-348, (2010)
[47] Buchmuller, W.; Hamaguchi, K.; Lebedev, O.; Ratz, M., Supersymmetric standard model from the heterotic string, Phys. rev. lett., 96, 121602, (2006)
[48] Lebedev, O.; Nilles, H.P.; Raby, S.; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, P.K.S.; Wingerter, A., A mini-landscape of exact MSSM spectra in heterotic orbifolds, Phys. lett. B, 645, 88, (2007) · Zbl 1256.81094
[49] Lebedev, O.; Nilles, H.P.; Ramos-Sanchez, S.; Ratz, M.; Vaudrevange, P.K.S., Heterotic mini-landscape (II): completing the search for MSSM vacua in a \(Z_6\) orbifold, Phys. lett. B, 668, 331, (2008)
[50] Faraggi, A.E.; Kounnas, C.; Rizos, J., Chiral family classification of fermionic \(Z_2 \times Z_2\) heterotic orbifold models, Phys. lett. B, 648, 84, (2007) · Zbl 1248.81166
[51] Dijkstra, T.P.T.; Huiszoon, L.R.; Schellekens, A.N.; Dijkstra, T.P.T.; Huiszoon, L.R.; Schellekens, A.N., Supersymmetric standard model spectra from RCFT orientifolds, Phys. lett. B, Nucl. phys. B, 710, 3, (2005) · Zbl 1115.81378
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.