×

zbMATH — the first resource for mathematics

Three-dimensional mixed-mode stress intensity factors for cracks in functionally graded materials using enriched finite elements. (English) Zbl 1215.74071
Summary: Three-dimensional enriched finite elements are used to compute mixed-mode stress intensity factors (SIFs) for three-dimensional cracks in elastic functionally graded materials (FGMs) that are subject to general mixed-mode loading and constraint conditions. The method, which advantageously does not require special mesh configuration/modifications and post-processing of finite element results, is an enhancement of previous developments applied so far on isotropic homogeneous and isotropic interface cracks. The spatial variation of FGM material properties is taken into account at the level of element integration points. To validate the developed method, two- and three-dimensional mixed-mode fracture problems are selected from the literature for comparison. Two-dimensional cases include: inclined central crack in a large FGM medium under uniform tensile strain and stress loadings, a slanted crack in a finite-size FGM plate under exponentially varying tensile stress loading and an edge crack in a finite-size plate under shear traction load. The three-dimensional example models a deflected surface crack in a finite-size FGM plate under uniform tensile stress loading. Comparisons between current results and those from analytical and other numerical methods yield good agreement. Thus, it is concluded that the developed three-dimensional enriched finite elements are capable of accurately computing mixed-mode fracture parameters for cracks in FGMs.

MSC:
74R10 Brittle fracture
74G70 Stress concentrations, singularities in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
74E05 Inhomogeneity in solid mechanics
Software:
ANSYS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abanto-Bueno, J.; Lambros, J.: Investigation of crack growth in functionally graded materials using digital image correlation, Engineering fracture mechanics 69, 1695-1711 (2002)
[2] Abanto-Bueno, J.; Lambros, J.: An experimental study of mixed mode crack initiation and growth in functionally graded materials, Experimental mechanics 46, 179-196 (2006)
[3] Anlas, G.; Lambros, J.; Santare, M. H.: Dominance of asymptotic crack tip fields in elastic functionally graded materials, International journal of fracture 115, 193-204 (2002)
[4] ANSYS, 2008. Version 11.0. Ansys Inc., Canonsburg, PA, USA.
[5] Ayhan, A.O., 1999. Finite element analysis of nonlinear deformation mechanisms in semiconductor packages. Ph.D. Dissertation, Lehigh University.
[6] Ayhan, A.O., Nied, H.F., 1999. FRAC3D-finite element based software for 3D and generalized plane strain fracture analysis (second revision). SRC Technical Report.
[7] Ayhan, A. O.; Nied, H. F.: Stress intensity factors for three-dimensional surface cracks using enriched finite elements, International journal for numerical methods in engineering 54, No. 6, 899-921 (2002) · Zbl 1098.74679 · doi:10.1002/nme.459
[8] Ayhan, A. O.: Mixed-mode stress intensity factors for deflected and inclined surface cracks in finite-thickness plates, Engineering fracture mechanics 71, No. 7-8, 1059-1079 (2004)
[9] Ayhan, A. O.: Mixed-mode stress intensity factors for deflected and inclined corner cracks in finite-thickness plates, International journal of fatigue 29, No. 2, 305-317 (2007) · Zbl 1194.74085 · doi:10.1016/j.ijfatigue.2006.03.006
[10] Ayhan, A. O.: Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements, International journal of solids and structures 44, No. 25-26, 8579-8599 (2007) · Zbl 1167.74431 · doi:10.1016/j.ijsolstr.2007.06.022
[11] Butcher, R. J.; Rousseau, C. E.; Tippur, H. V.: A functionally graded particulate composite: preparation, measurements and failure analysis, Acta materialia 47, No. 1, 259-268 (1998)
[12] Carpenter, R. D.; Paulino, G. H.; Munir, Z. A.; Gibeling, J. C.: A novel technique to generate sharp cracks in metallic/ceramic functionally graded materials by reverse 4-point bending, Scripta materialia 43, 547-552 (2000)
[13] Choi, H. J.: The problem for bonded half-planes containing a crack at an arbitrary angle to the graded interfacial zone, International journal of solids and structures 38, 6559-6588 (2001) · Zbl 1055.74038 · doi:10.1016/S0020-7683(01)00090-7
[14] Delale, F.; Erdogan, F.: The crack problem for a nonhomogeneous plane, Journal of applied mechanics 50, 609-614 (1983) · Zbl 0542.73118 · doi:10.1115/1.3167098
[15] Dolbow, J. E.; Gosz, M.: On the computation of mixed-mode stress intensity factors in functionally graded materials, International journal of solids and structures 39, 2557-2574 (2002) · Zbl 1087.74547 · doi:10.1016/S0020-7683(02)00114-2
[16] Eischen, J. W.: Fracture of nonhomogeneous materials, International journal of fracture 34, 3-22 (1987)
[17] Erdogan, F.: Fracture mechanics of functionally graded materials, Composites engineering 5, No. 7, 753-770 (1995)
[18] Erdogan, F.; Wu, B. H.: The surface crack problem for a plate with functionally graded properties, Journal of applied mechanics 64, 449-456 (1997) · Zbl 0900.73615 · doi:10.1115/1.2788914
[19] Erdogan, F.: Fracture mechanics, International journal of solids and structures 37, 171-183 (2000) · Zbl 1075.74069 · doi:10.1016/S0020-7683(99)00086-4
[20] Forth, S. C.; Favrow, L. H.; Keat, W. D.; Newman, J. A.: Three-dimensional mixed-mode fatigue crack growth in a functionally graded titanium alloy, Engineering fracture mechanics 70, 2175-2185 (2003)
[21] Gu, P.; Dao, M.; Asaro, R. J.: A simplified method for calculating the crack-tip field of functionally graded materials using the domain integral, Journal of applied mechanics 66/1, 101-108 (1999)
[22] Hartranft, R. J.; Sih, G. C.: The use of eigenfunction expansions in the general solution of three-dimensional crack problems, Journal of mathematics and mechanics 19, 123-138 (1969) · Zbl 0183.54202
[23] Honein, T.; Herrmann, G.: Conservation laws in nonhomogeneous plane elastostatics, Journal of mechanics and physics of solids 45/5, 789-805 (1997) · Zbl 0974.74507 · doi:10.1016/S0022-5096(96)00087-7
[24] Ichikawa, K.: Functionally graded materials in the 21st century: a workshop on trends and forecasts, (2000)
[25] Kim, J. H.; Paulino, G. H.: Finite element evaluation of mixed mode stress intensity factors in functionally graded materials, International journal for numerical methods in engineering 53, 1903-1935 (2002) · Zbl 1169.74612 · doi:10.1002/nme.364
[26] Kim, J. H.; Paulino, G. H.: Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials, Journal of applied mechanics 69/4, 502-514 (2002) · Zbl 1110.74509 · doi:10.1115/1.1467094
[27] Kim, J. H.; Paulino, G. H.: Simulation of crack propagation in functionally graded materials under mixed-mode and non-proportional loading, International journal of mechanics and materials in design 1, 63-94 (2004)
[28] Kim, J. H.; Paulino, G. H.: On fracture criteria for mixed-mode crack propagation in functionally graded materials, Mechanics of advanced materials and structures 14, 227-244 (2007)
[29] Konda, N.; Erdogan, F.: The mixed-mode crack problem in a nonhomogeneous elastic medium, Engineering fracture mechanics 47, 533-545 (1994)
[30] Long, X.; Delale, F.: The mixed mode crack problem in an FGM layer bonded to a homogeneous half-plane, International journal of solids and structures 42, 3897-3917 (2005) · Zbl 1119.74559 · doi:10.1016/j.ijsolstr.2004.12.003
[31] Oral, A.; Lambros, J.; Anlas, G.: Crack initiation in functionally graded materials under mixed mode loading: experiments and simulations, Journal of applied mechanics 75/5, 051110 (2008)
[32] Ozturk, M.; Erdogan, F.: Axisymmetric crack problem in bonded materials with a graded interfacial region, International journal of solids and structures 33/2, 193-219 (1996) · Zbl 0929.74096 · doi:10.1016/0020-7683(95)00034-8
[33] Parameswaran, V.; Shukla, A.: Dynamic fracture of a functionally gradient material having discrete property variation, Journal of material science 33, 3303-3311 (1998)
[34] Rice, J. R.: A path-independent integral and the approximate analysis of strain concentration by notches and cracks, ASME journal of applied mechanics 35, 379-386 (1968)
[35] Santare, M. H.; Lambros, J.: Use of graded finite elements to model the behavior of nonhomogeneous materials, Journal of applied mechanics 67/4, 819-822 (2000) · Zbl 1110.74660 · doi:10.1115/1.1328089
[36] Shim, D. J.; Paulino, G. H.; Dodds, R. H.: Effect of material gradation on K-dominance of fracture specimens, Engineering fracture mechanics 73, 643-648 (2006)
[37] Tohgo, K.; Hadano, A.: Characterization of fracture process in ceramic-metal functionally graded material under three-point bending, Japanese society of mechanical engineers international journal, series A 49/3, 321-330 (2006)
[38] Walters, M. C.; Paulino, G. H.; Dodds, R. H.: Stress-intensity factors for surface cracks in functionally graded materials under mode-I thermomechanical loading, International journal of solids and structures 41, 1081-1118 (2004) · Zbl 1075.74535 · doi:10.1016/j.ijsolstr.2003.09.050
[39] Walters, M. C.; Paulino, G. H.; Dodds, R. H.: Computation of mixed-mode stress intensity factors for cracks in three-dimensional functionally graded solids, Journal of engineering mechanics 132, 1-15 (2006)
[40] Williams, M. L.: On the stress distribution at the base of a stationary crack, Journal of applied mechanics 24, 109-114 (1957) · Zbl 0077.37902
[41] Yildirim, B.; Dag, S.; Erdogan, F.: Three-dimensional fracture analysis of FGM coatings under thermomechanical loading, International journal of fracture 132, 369-395 (2005) · Zbl 1196.74232 · doi:10.1007/s10704-005-2527-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.