×

zbMATH — the first resource for mathematics

Forcing operators on MTL-algebras. (English) Zbl 1215.03075
The authors study the forcing operators on MTL-algebra and characterize the forcing operators in terms of some MTL-algebra morphisms as an algebraic reflection of the relationship between forcing semantics and algebraic semantics of MTL.

MSC:
03G25 Other algebras related to logic
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. Buşneag Categories of Algebraic Logic (Ed. Academiei Române, 2006).
[2] B. Bělohlávek Fuzzy Relational Systems: Foundations and Principles (Kluwer, 2002).
[3] Chang, Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 pp 467– (1958) · Zbl 0084.00704
[4] Cignoli, Basic fuzzy logic is the logic of continuous t -norms and their residua, Soft Computing 4 pp 106– (2000) · Zbl 02181428
[5] R. Cignoli D. Mundici I. M. L. D’Ottaviano Algebraic Foundations of Many-valued Reasoning (Kluwer, 2000). · Zbl 0937.06009
[6] Cintula, Distinguished algebraic semantics for t-norm based fuzzy logics: methods and algebraic equivalences, Annals Pure Appl. Logic. 160 pp 53– (2009) · Zbl 1168.03052
[7] P. J. Cohen Set Theory and the Continuum Hypothesis (New York, 1966).
[8] Di Nola, Forcing in Łukasiewicz predicate logic, Studia Logica. 82 pp 111– (2008) · Zbl 1170.03013
[9] Diaconescu, On the Forcing Semantics for Monoidal t-norm Based Logic, J. Universal Computer Science 11 pp 1550– (2007)
[10] D. Drägulici Polyadic algebras for t-norm based logics (PhD Thesis) (University of Bucharest, 2007).
[11] Esteva, Monoidal t -norm based logic: towards a logic for left-continuous t -norms, Fuzzy Sets Systems 123 pp 271– (2001) · Zbl 0994.03017
[12] M. Fitting Intuitionistic Logic, Model Theory and Forcing (North-Holland, 1969).
[13] Flondor, Pseudo-t -norms and pseudo-BL algebras, Soft Computing 5 pp 355– (2001) · Zbl 0995.03048
[14] Font, Wajsberg algebras, Stochastica 8 pp 5– (1984)
[15] Galatos, Residuated lattices: an algebraic glimpse at substructural logics, Studies in Logic 151 (2007) · Zbl 1171.03001
[16] Hájek, Basic fuzzy logic and BL-algebras, Soft Computing 2 pp 124– (1998) · Zbl 05469956
[17] P. Hájek Metamathematics of Fuzzy Logic (Kluwer, 1998).
[18] P. R. Halmos Algebraic Logic (Chelsea Publ. Comp., 1962).
[19] A. Iorgulescu On BCK -algebras - Part IV. Preprint Series of the Institute of Mathematics of the Romanian Academy 4 , (2004).
[20] T. J. Jech Lectures in set theory with particular emphasis on the method of forcing. Lecture Notes in Mathematics 217 (Springer-Verlag, 1971).
[21] Jenei, A proof of standard completeness for Esteva and Godo’s logic MTL, Studia Logica 70 pp 183– (2002) · Zbl 0997.03027
[22] Jipsen, An overview of generalized logic algebras, Neural Network World 13 pp 491– (2003)
[23] P. Jipsen C. Tsinakis A survey of residuated lattices. In: Ordered Algebraic Structures (J. Martinez ed.), pp. 19-56 (Kluwer, 2002). · Zbl 1070.06005
[24] S. Kripke Semantical analysis of intuitionistic logic. In: Formal Systems and Recursive Functions, pp. 92-130 (NorthHolland, 1965). · Zbl 0137.00702
[25] Lemmon, Algebraic semantics for modal logics, J. Symbolic Logic 31 pp 46– (1996) · Zbl 0147.24805
[26] J. Łukasiewicz A. Tarski Untersuchungen über den Aussagenkalkül. Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie 23 , 30-50 (Classe III).
[27] Montagna, Kripke semantics, undecidability and standard completeness for Esteva and Godo’s logic MTL, Studia Logica 71 pp 227– (2002) · Zbl 1013.03021
[28] Montagna, Kripke-style semantics for many-valued logics, Math. Log. Quart. 49 pp 629– (2003) · Zbl 1035.03010
[29] Mundici, Interpretation of AF C*-algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 pp 15– (1986) · Zbl 0597.46059
[30] D. Piciu Algebras of Fuzzy Logic (Ed. Universitaria Craiova, 2007).
[31] Schwartz, Polyadic MV-algebras, Z. Math. Logik Grundlagen Math. 26 pp 561– (1980) · Zbl 0488.03035
[32] Schweizer, Statistical metric spaces, Pacific J. Math. 10 pp 312– (1960) · Zbl 0091.29801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.