×

Scalar solitons and the microscopic entropy of hairy black holes in three dimensions. (English) Zbl 1214.83016

Summary: General Relativity coupled to a self-interacting scalar field in three dimensions is shown to admit exact analytic soliton solutions, such that the metric and the scalar field are regular everywhere. Since the scalar field acquires slow fall-off at infinity, the soliton describes an asymptotically AdS spacetime in a relaxed sense as compared with the one of Brown and Henneaux. Nevertheless, the asymptotic symmetry group remains to be the conformal group, and the algebra of the canonical generators possesses the standard central extension. For this class of asymptotic behavior, the theory also admits hairy black holes which raises some puzzles concerning a holographic derivation of their entropy à la Strominger. Since the soliton is devoid of integration constants, it has a fixed (negative) mass, and it can be naturally regarded as the ground state of the “hairy sector”, for which the scalar field is switched on. This assumption allows to exactly reproduce the semiclassical hairy black hole entropy from the asymptotic growth of the number of states by means of Cardy formula. Particularly useful is expressing the asymptotic growth of the number of states only in terms of the spectrum of the Virasoro operators without making any explicit reference to the central charges.

MSC:

83C57 Black holes
83E30 String and superstring theories in gravitational theory
83C15 Exact solutions to problems in general relativity and gravitational theory
83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
35Q51 Soliton equations
94A17 Measures of information, entropy
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] P. Breitenlohner and D.Z. Freedman, Positive energy in anti-de Sitter backgrounds and gauged extended supergravity, Phys. Lett.B 115 (1982) 197 [SPIRES].
[2] P. Breitenlohner and D.Z. Freedman, Stability in gauged extended supergravity, Ann. Phys.144 (1982) 249 [SPIRES]. · Zbl 0606.53044
[3] L. Mezincescu and P.K. Townsend, Stability at a local maximum in higher dimensional anti-de Sitter space and applications to supergravity, Ann. Phys.160 (1985) 406 [SPIRES].
[4] M. Henneaux, C. Martínez, R. Troncoso and J. Zanelli, Black holes and asymptotics of 2+1 gravity coupled to a scalar field, Phys. Rev.D 65 (2002) 104007 [hep-th/0201170] [SPIRES].
[5] M. Henneaux, C. Martínez, R. Troncoso and J. Zanelli, Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch, Phys. Rev.D 70 (2004) 044034 [hep-th/0404236] [SPIRES].
[6] M. Henneaux, C. Martínez, R. Troncoso and J. Zanelli, Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields, Annals Phys.322 (2007) 824 [hep-th/0603185] [SPIRES]. · Zbl 1123.83010
[7] T. Hertog and K. Maeda, Black holes with scalar hair and asymptotics in N = 8 supergravity, JHEP07 (2004) 051 [hep-th/0404261] [SPIRES].
[8] A.J. Amsel and D. Marolf, Energy bounds in designer gravity, Phys. Rev.D 74 (2006) 064006 [Erratum-ibid. D 75 (2007) 029901] [hep-th/0605101] [SPIRES].
[9] J.D. Brown and M. Henneaux, Central charges in the canonical realization of asymptotic symmetries: an example from three-dimensional gravity, Commun. Math. Phys.104 (1986) 207 [SPIRES]. · Zbl 0584.53039
[10] M. Henneaux and C. Teitelboim, Asymptotically anti-de Sitter Spaces, Commun. Math. Phys.98 (1985) 391 [SPIRES]. · Zbl 1032.83502
[11] M. Henneaux, Asymptotically anti-De Sitter universes in D = 3, 4 and higher dimensions, Proceedings of the Fourth Marcel Grossmann Meeting on General Relativity, Rome 1985, R. Ruffini ed., Elsevier Science Publishers B.V., (1985) 959 [SPIRES]
[12] C. Martínez, R. Troncoso and J. Zanelli, Exact black hole solution with a minimally coupled scalar field, Phys. Rev.D 70 (2004) 084035 [hep-th/0406111] [SPIRES].
[13] C. Martínez, R. Troncoso and J. Zanelli, de Sitter black hole with a conformally coupled scalar field in four dimensions, Phys. Rev.D 67 (2003) 024008 [hep-th/0205319] [SPIRES].
[14] C. Martínez, J.P. Staforelli and R. Troncoso, Charged topological black hole with a conformally coupled scalar field, Phys. Rev.D 74 (2006) 044028 [hep-th/0512022] [SPIRES].
[15] C. Martínez and R. Troncoso, Electrically charged black hole with scalar hair, Phys. Rev.D 74 (2006) 064007 [hep-th/0606130] [SPIRES].
[16] C. Charmousis, T. Kolyvaris and E. Papantonopoulos, Charged C-metric with conformally coupled scalar field, Class. Quant. Grav.26 (2009) 175012 [arXiv:0906.5568] [SPIRES]. · Zbl 1176.83038
[17] A. Anabalon and H. Maeda, New charged black holes with conformal scalar hair, Phys. Rev.D 81 (2010) 041501 [arXiv:0907.0219] [SPIRES].
[18] T. Kolyvaris, G. Koutsoumbas, E. Papantonopoulos and G. Siopsis, A new class of exact hairy black hole solutions, arXiv:0911.1711 [SPIRES]. · Zbl 1208.83064
[19] T. Torii, K. Maeda and M. Narita, Scalar hair on the black hole in asymptotically anti-de Sitter spacetime, Phys. Rev.D 64 (2001) 044007 [SPIRES].
[20] E. Winstanley, On the existence of conformally coupled scalar field hair for black holes in (anti-)de Sitter space, Found. Phys.33 (2003) 111 [gr-qc/0205092] [SPIRES].
[21] T. Hertog and G.T. Horowitz, Designer gravity and field theory effective potentials, Phys. Rev. Lett.94 (2005) 221301 [hep-th/0412169] [SPIRES].
[22] E. Radu and E. Winstanley, Conformally coupled scalar solitons and black holes with negative cosmological constant, Phys. Rev.D 72 (2005) 024017 [gr-qc/0503095] [SPIRES].
[23] G. Dotti, R.J. Gleiser and C. Martínez, Static black hole solutions with a self interacting conformally coupled scalar field, Phys. Rev.D 77 (2008) 104035 [arXiv:0710.1735] [SPIRES].
[24] D. Hosler and E. Winstanley, Higher-dimensional solitons and black holes with a non-minimally coupled scalar field, Phys. Rev.D 80 (2009) 104010 [arXiv:0907.1487] [SPIRES].
[25] O.J.C. Dias, R. Monteiro, H.S. Reall and J.E. Santos, A scalar field condensation instability of rotating anti-de Sitter black holes, JHEP11 (2010) 036 [arXiv:1007.3745] [SPIRES]. · Zbl 1294.83042
[26] S.S. Gubser, Breaking an abelian gauge symmetry near a black hole horizon, Phys. Rev.D 78 (2008) 065034 [arXiv:0801.2977] [SPIRES].
[27] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [SPIRES]. · Zbl 1404.82086
[28] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [SPIRES]. · Zbl 1181.83003
[29] C.P. Herzog, Lectures on holographic superfluidity and superconductivity, J. Phys.A 42 (2009) 343001 [arXiv:0904.1975] [SPIRES]. · Zbl 1180.82218
[30] G.T. Horowitz, Introduction to holographic superconductors, arXiv:1002.1722 [SPIRES]. · Zbl 1246.83009
[31] S.S. Gubser and A. Nellore, Low-temperature behavior of the abelian Higgs model in anti-de Sitter space, JHEP04 (2009) 008 [arXiv:0810.4554] [SPIRES].
[32] P. Basu et al., Small hairy black holes in global AdS spacetime, JHEP10 (2010) 045 [arXiv:1003.3232] [SPIRES]. · Zbl 1291.83127
[33] M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett.69 (1992) 1849 [hep-th/9204099] [SPIRES]. · Zbl 0968.83514
[34] M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2+1) black hole, Phys. Rev.D 48 (1993) 1506 [gr-qc/9302012] [SPIRES].
[35] G. Barnich, Conserved charges in gravitational theories: Contribution from scalar fields, gr-qc/0211031 [SPIRES].
[36] G. Barnich, Boundary charges in gauge theories: using Stokes theorem in the bulk, Class. Quant. Grav.20 (2003) 3685 [hep-th/0301039] [SPIRES]. · Zbl 1045.83013
[37] J. Gegenberg, C. Martínez and R. Troncoso, A finite action for three dimensional gravity with a minimally coupled scalar field, Phys. Rev.D 67 (2003) 084007 [hep-th/0301190] [SPIRES].
[38] G. Clément, Black hole mass and angular momentum in 2+1 gravity, Phys. Rev.D 68 (2003) 024032 [gr-qc/0301129] [SPIRES].
[39] M. Bañados and S. Theisen, Scale invariant hairy black holes, Phys. Rev.D 72 (2005) 064019 [hep-th/0506025] [SPIRES].
[40] T. Regge and C. Teitelboim, Role of surface integrals in the Hamiltonian formulation of general relativity, Ann. Phys.88 (1974) 286 [SPIRES]. · Zbl 0328.70016
[41] J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys.B 270 (1986) 186 [SPIRES]. · Zbl 0689.17016
[42] A. Strominger, Black hole entropy from near-horizon microstates, JHEP02 (1998) 009 [hep-th/9712251] [SPIRES]. · Zbl 0955.83010
[43] S. Carlip, Entropy from conformal field theory at Killing horizons, Class. Quant. Grav.16 (1999) 3327 [gr-qc/9906126] [SPIRES]. · Zbl 0935.83023
[44] M.-I. Park, Fate of three-dimensional black holes coupled to a scalar field and the Bekenstein-Hawking entropy, Phys. Lett.B 597 (2004) 237 [hep-th/0403089] [SPIRES]. · Zbl 1123.83304
[45] P. Di Francesco, P. Mathieu and D. Senechal, Conformal Field Theory, Springer, New York U.S.A. (1997) [SPIRES]. · Zbl 0869.53052
[46] J. Oliva, D. Tempo and R. Troncoso, Three-dimensional black holes, gravitational solitons, kinks and wormholes for BHT masive gravity, JHEP07 (2009) 011 [arXiv:0905.1545] [SPIRES].
[47] E.A. Bergshoeff, O. Hohm and P.K. Townsend, Massive gravity in three dimensions, Phys. Rev. Lett.102 (2009) 201301 [arXiv:0901.1766] [SPIRES].
[48] C. Martínez and J. Zanelli, Conformally dressed black hole in 2+1 dimensions, Phys. Rev.D 54 (1996) 3830 [gr-qc/9604021] [SPIRES].
[49] D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS3black holes, JHEP03 (2009) 130 [arXiv:0807.3040] [SPIRES].
[50] G. Compère and S. Detournay, Semi-classical central charge in topologically massive gravity, Class. Quant. Grav.26 (2009) 012001 [Erratum-ibid. 26 (2009) 139801] [arXiv:0808.1911] [SPIRES]. · Zbl 1157.83332
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.