zbMATH — the first resource for mathematics

Vector boson plus one jet production in POWHEG. (English) Zbl 1214.81343
Summary: We present an implementation of the next-to-leading order vector boson plus one jet production process in hadronic collision in the framework of POWHEG, which is a method to implement NLO calculations within a Shower Monte Carlo context. All spin correlations in the vector boson decay products have been taken into account. The process has been implemented in the framework of the POWHEG BOX, an automated computer code for building implementations of NLO calculations that can be interfaced to a shower Monte Carlo program. We present phenomenological results for the case of the \(Z/\gamma \) plus one jet production process, obtained by matching the POWHEG calculation with the shower performed by PYTHIA, for the LHC, and we compare our results with available Tevatron data.

81V35 Nuclear physics
81U35 Inelastic and multichannel quantum scattering
81V05 Strong interaction, including quantum chromodynamics
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
65C05 Monte Carlo methods
81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
Full Text: DOI
[1] CDF-Run II collaboration; Aaltonen, T.; etal., Measurement of inclusive jet cross-sections in \(Z\)/\(γ\)\^{}{∗}(→\(e\)\^{}{+}\(e\)\^{}{−}) + jets production in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;{\text{TeV}} \), Phys. Rev. Lett., 100, 102001, (2008)
[2] D0 collaboration; Abazov, VM; etal., Measurement of the ratios of the \(Z\)/\(G\)\^{}{∗}+ ≥ \(n\) jet production cross sections to the total inclusive \(Z\)/\(G\)\^{}{∗} cross section in \( p\bar{p} \) collisions at \( \sqrt {(} s) = 1.96\;{\text{TeV}} \), Phys. Lett., B 658, 112, (2008)
[3] D0 collaboration; Abazov, VM; etal., Measurement of differential \(Z\)/\(γ\)\^{}{∗} + jet + X cross sections in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;{\text{TeV}} \), Phys. Lett., B 669, 278, (2008)
[4] D0 collaboration; Abazov, VM; etal., Measurements of differential cross sections of \(Z\)/\(γ\)\^{}{∗}+jets+X events in proton anti-proton collisions at \( \sqrt {s} = 1.96\;{\text{TeV}} \), Phys. Lett., B 678, 45, (2009)
[5] D0 collaboration; Abazov, VM; etal., Measurement of \(Z\)/\(γ\)\^{}{∗} + jet + X angular distributions in \( p\bar{p} \) collisions at \( \sqrt {s} = 1.96\;{\text{TeV}} \), Phys. Lett., B 682, 370, (2010)
[6] C. Buttar et al., Standard model handles and candles working group: tools and jets summary report, arXiv:0803.0678 [SPIRES].
[7] Nason, P., A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP, 11, 040, (2004)
[8] Frixione, S.; Nason, P.; Oleari, C., Matching NLO QCD computations with parton shower simulations: the POWHEG method, JHEP, 11, 070, (2007)
[9] Alioli, S.; Nason, P.; Oleari, C.; Re, E., A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP, 06, 043, (2010)
[10] Hagiwara, K.; Zeppenfeld, D., Helicity amplitudes for heavy lepton production in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Nucl. Phys., B 274, 1, (1986)
[11] Hagiwara, K.; Zeppenfeld, D., Amplitudes for multiparton processes involving a current at \(e\)\^{}{+}\(e\)\^{}{−}, \(e\)\^{}{±}\(p\) and hadron colliders, Nucl. Phys., B 313, 560, (1989)
[12] Campbell, JM; Ellis, RK, Next-to-leading order corrections to \(W\)\^{}{+} 2 jet and \(Z\)\^{}{+} 2 jet production at hadron colliders, Phys. Rev., D 65, 113007, (2002)
[13] Bern, Z.; Dixon, LJ; Kosower, DA, One-loop amplitudes for \(e\)\^{}{+}\(e\)\^{}{−} to four partons, Nucl. Phys., B 513, 3, (1998)
[14] Giele, WT; Glover, EWN, Higher order corrections to jet cross-sections in \(e\)\^{}{+}\(e\)\^{}{−} annihilation, Phys. Rev., D 46, 1980, (1992)
[15] Alioli, S.; Nason, P.; Oleari, C.; Re, E., NLO vector-boson production matched with shower in POWHEG, JHEP, 07, 060, (2008)
[16] Pumplin, J.; etal., New generation of parton distributions with uncertainties from global QCD analysis, JHEP, 07, 012, (2002)
[17] Frixione, S.; Nason, P.; Ridolfi, G., A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP, 09, 126, (2007)
[18] S. Frixione, P. Nason and G. Ridolfi, The POWHEG-hvq manual version 1\(.\)0, arXiv:0707.3081 [SPIRES].
[19] Frixione, S.; Webber, BR, Matching NLO QCD computations and parton shower simulations, JHEP, 06, 029, (2002)
[20] J. Campbell and K. Ellis, MCFM — Monte Carlo for FeMtobarn processes, http://mcfm.fnal.gov.
[21] Berger, CF; etal., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev., D 78, 036003, (2008)
[22] Sjöstrand, T.; Mrenna, S.; Skands, PZ, PYTHIA 6.4 physics and manual, JHEP, 05, 026, (2006)
[23] Cacciari, M.; Salam, GP, Dispelling the \(N\)\^{}{3} myth for the \(k\)_{\(t\)} jet-finder, Phys. Lett., B 641, 57, (2006)
[24] CDF collaboration; Abulencia, A.; etal., Measurement of the inclusive jet cross section in \( p\bar{p} \) interactions at \( \sqrt {s} = 1.96\;{\text{TeV}} \) using a cone-based jet algorithm, Phys. Rev., D 74, 071103, (2006)
[25] CDF Run II QCD group results, http://www-cdf.fnal.gov/physics/new/qcd/QCD.html.
[26] G.C. Blazey and et al., Run II Jet physics in QCD and weak boson physics in Run II, FERMILAB-PUB-00-297 [SPIRES].
[27] E. Boos et al., Generic user process interface for event generators, hep-ph/0109068 [SPIRES].
[28] Alwall, J.; etal., A standard format for LES houches event files, Comput. Phys. Commun., 176, 300, (2007)
[29] P. Nason, MINT: a computer program for adaptive Monte Carlo integration and generation of unweighted distributions, arXiv:0709.2085 [SPIRES].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.