×

zbMATH — the first resource for mathematics

Feynman rules for the rational part of the electroweak 1-loop amplitudes in the \(R_{\xi }\) gauge and in the unitary gauge. (English) Zbl 1214.81328
Summary: We present the complete set of Feynman rules producing the rational terms of kind \(R_{2}\) needed to perform any 1-loop calculation in the Electroweak Standard Model. Our formulae are given both in the \(R _{\xi }\) gauge and in the Unitary gauge, therefore completing the results in the ’t Hooft-Feynman gauge already presented in a previous publication.
As a consistency check, we verified, in the case of the process \(H \rightarrow \gamma \gamma \) and in a few other physical cases, the independence of the total Rational Part \((R_{1} +R_{2})\) on the chosen gauge. In addition, we explicitly checked the equivalence of the limits \(\xi \rightarrow \infty \) after or before the loop momentum integration in the definition of the Unitary gauge at 1-loop.

MSC:
81V22 Unified quantum theories
81T18 Feynman diagrams
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Mastrolia, P.; Ossola, G.; Papadopoulos, CG; Pittau, R., Optimizing the reduction of one-loop amplitudes, JHEP, 06, 030, (2008)
[2] Binoth, T.; Ossola, G.; Papadopoulos, CG; Pittau, R., NLO QCD corrections to tri-boson production, JHEP, 06, 082, (2008)
[3] Hameren, A.; Papadopoulos, CG; Pittau, R., Automated one-loop calculations: a proof of concept, JHEP, 09, 106, (2009)
[4] Ellis, RK; Melnikov, K.; Zanderighi, G., Generalized unitarity at work: first NLO QCD results for hadronic W\^{+} 3-jet production, JHEP, 04, 077, (2009)
[5] Berger, CF; etal., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett., 102, 222001, (2009)
[6] Binoth, T.; etal., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun., 181, 1612, (2010)
[7] SM and NLO Multileg Working Group collaboration, J. R. Andersenetal., The SM and NLO multileg working group: summary report, arXiv:1003.1241 [SPIRES].
[8] Mastrolia, P.; Ossola, G.; Reiter, T.; Tramontano, F., Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP, 08, 080, (2010)
[9] Pittau, R., Testing and improving the numerical accuracy of the NLO predictions, Comput. Phys. Commun., 181, 1941, (2010)
[10] Heinrich, G.; Ossola, G.; Reiter, T.; Tramontano, F., Tensorial reconstruction at the integrand level, JHEP, 10, 105, (2010)
[11] Aguila, F.; Pittau, R., Recursive numerical calculus of one-loop tensor integrals, JHEP, 07, 017, (2004)
[12] R. Pittau, Formulae for a numerical computation of one-loop tensor integrals, hep-ph/0406105 [SPIRES].
[13] Ossola, G.; Papadopoulos, CG; Pittau, R., Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys., B 763, 147, (2007)
[14] Ossola, G.; Papadopoulos, CG; Pittau, R., Cuttools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP, 03, 042, (2008)
[15] Britto, R.; Cachazo, F.; Feng, B., Generalized unitarity and one-loop amplitudes in N =4 super-Yang-Mills, Nucl. Phys., B 725, 275, (2005)
[16] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys., B 425, 217, (1994)
[17] Bern, Z.; Dixon, LJ; Dunbar, DC; Kosower, DA, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys., B 435, 59, (1995)
[18] Bern, Z.; Dixon, LJ; Kosower, DA, One loop corrections to two quark three gluon amplitudes, Nucl. Phys., B 437, 259, (1995)
[19] Bern, Z.; Morgan, AG, Massive loop amplitudes from unitarity, Nucl. Phys., B 467, 479, (1996)
[20] Bern, Z.; Dixon, LJ; Kosower, DA, One-loop amplitudes for e\^{+}e\^{−} to four partons, Nucl. Phys., B 513, 3, (1998)
[21] Anastasiou, C.; Britto, R.; Feng, B.; Kunszt, Z.; Mastrolia, P., D-dimensional unitarity cut method, Phys. Lett., B 645, 213, (2007)
[22] Forde, D., Direct extraction of one-loop integral coefficients, Phys. Rev., D 75, 125019, (2007)
[23] Giele, WT; Kunszt, Z.; Melnikov, K., Full one-loop amplitudes from tree amplitudes, JHEP, 04, 049, (2008)
[24] Ellis, RK; Giele, WT; Kunszt, Z.; Melnikov, K., Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys., B 822, 270, (2009)
[25] Ossola, G.; Papadopoulos, CG; Pittau, R., Numerical evaluation of six-photon amplitudes, JHEP, 07, 085, (2007)
[26] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Pittau, R.; Worek, M., A ssault on the NLO wishlist: pp → ttbb, JHEP, 09, 109, (2009)
[27] Bevilacqua, G.; Czakon, M.; Papadopoulos, CG; Worek, M., Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \( pp → t\overline t + 2 \) jets at next-to-leading order, Phys. Rev. Lett., 104, 162002, (2010)
[28] Melia, T.; Melnikov, K.; Rontsch, R.; Zanderighi, G., Next-to-leading order QCD predictions for W+W+jj production at the LHC, JHEP, 12, 053, (2010)
[29] C.F. Berger et al., Precise predictions for W +4 jet production at the Large Hadron Collider, arXiv:1009.2338 [SPIRES].
[30] Bern, Z.; Dixon, LJ; Kosower, DA, On-shell recurrence relations for one-loop QCD amplitudes, Phys. Rev., D 71, 105013, (2005)
[31] Bern, Z.; Dixon, LJ; Kosower, DA, The last of the finite loop amplitudes in QCD, Phys. Rev., D 72, 125003, (2005)
[32] Bern, Z.; Dixon, LJ; Kosower, DA, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev., D 73, 065013, (2006)
[33] Berger, CF; Bern, Z.; Dixon, LJ; Forde, D.; Kosower, DA, Bootstrapping one-loop QCD amplitudes with general helicities, Phys. Rev., D 74, 036009, (2006)
[34] Ossola, G.; Papadopoulos, CG; Pittau, R., On the rational terms of the one-loop amplitudes, JHEP, 05, 004, (2008)
[35] Draggiotis, P.; Garzelli, MV; Papadopoulos, CG; Pittau, R., Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP, 04, 072, (2009)
[36] Garzelli, MV; Malamos, I.; Pittau, R., Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP, 01, 040, (2010)
[37] Binoth, T.; Guillet, JP; Heinrich, G., Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP, 02, 013, (2007)
[38] Bredenstein, A.; Denner, A.; Dittmaier, S.; Pozzorini, S., NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP, 08, 108, (2008)
[39] Bern, Z.; Kosower, DA, The computation of loop amplitudes in gauge theories, Nucl. Phys., B 379, 451, (1992)
[40] Kunszt, Z.; Signer, A.; Trócsányi, Z., One loop helicity amplitudes for all 2 → 2 processes in QCD and N =1 supersymmetric Yang-Mills theory, Nucl. Phys., B 411, 397, (1994)
[41] Catani, S.; Seymour, MH; Trócsányi, Z., Regularization scheme independence and unitarity in QCD cross sections, Phys. Rev., D 55, 6819, (1997)
[42] Bern, Z.; Freitas, A.; Dixon, LJ; Wong, HL, Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts, Phys. Rev., D 66, 085002, (2002)
[43] Denner, A., Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. Phys., 41, 307, (1993)
[44] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
[45] Vermaseren, JAM, The FORM project, Nucl. Phys. Proc. Suppl., 183, 19, (2008)
[46] http://www.ugr.es/local/pittau/CutTools.
[47] D.Y. Bardin and G. Passarino, The standard model in the making: precision study of the electroweak interactions, Clarendon Press, Oxford U.K. (1999), p. 685 [SPIRES]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.