×

Feynman rules for the rational part of the electroweak 1-loop amplitudes in the \(R_{\xi }\) gauge and in the unitary gauge. (English) Zbl 1214.81328

Summary: We present the complete set of Feynman rules producing the rational terms of kind \(R_{2}\) needed to perform any 1-loop calculation in the Electroweak Standard Model. Our formulae are given both in the \(R _{\xi }\) gauge and in the Unitary gauge, therefore completing the results in the ’t Hooft-Feynman gauge already presented in a previous publication.
As a consistency check, we verified, in the case of the process \(H \rightarrow \gamma \gamma \) and in a few other physical cases, the independence of the total Rational Part \((R_{1} +R_{2})\) on the chosen gauge. In addition, we explicitly checked the equivalence of the limits \(\xi \rightarrow \infty \) after or before the loop momentum integration in the definition of the Unitary gauge at 1-loop.

MSC:

81V22 Unified quantum theories
81T18 Feynman diagrams
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] P. Mastrolia, G. Ossola, C.G. Papadopoulos and R. Pittau, Optimizing the reduction of one-loop amplitudes, JHEP06 (2008) 030 [arXiv:0803.3964] [SPIRES].
[2] T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP06 (2008) 082 [arXiv:0804.0350] [SPIRES].
[3] A. van Hameren, C.G. Papadopoulos and R. Pittau, Automated one-loop calculations: a proof of concept, JHEP09 (2009) 106 [arXiv:0903.4665] [SPIRES].
[4] R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W+ 3-jet production, JHEP04 (2009) 077 [arXiv:0901.4101] [SPIRES].
[5] C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett.102 (2009) 222001 [arXiv:0902.2760] [SPIRES].
[6] T. Binoth et al., A proposal for a standard interface between Monte Carlo tools and one-loop programs, Comput. Phys. Commun.181 (2010) 1612 [arXiv:1001.1307] [SPIRES]. · Zbl 1219.82008
[7] SM and NLO Multileg Working Group collaboration, J. R. Andersenetal., The SM and NLO multileg working group: summary report, arXiv:1003.1241 [SPIRES].
[8] P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP08 (2010) 080 [arXiv:1006.0710] [SPIRES]. · Zbl 1290.81151
[9] R. Pittau, Testing and improving the numerical accuracy of the NLO predictions, Comput. Phys. Commun.181 (2010) 1941 [arXiv:1006.3773] [SPIRES]. · Zbl 1219.81248
[10] G. Heinrich, G. Ossola, T. Reiter and F. Tramontano, Tensorial Reconstruction at the Integrand Level, JHEP10 (2010) 105 [arXiv:1008.2441] [SPIRES]. · Zbl 1291.81389
[11] F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP07 (2004) 017 [hep-ph/0404120] [SPIRES].
[12] R. Pittau, Formulae for a numerical computation of one-loop tensor integrals, hep-ph/0406105 [SPIRES].
[13] G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys.B 763 (2007) 147 [hep-ph/0609007] [SPIRES]. · Zbl 1116.81067
[14] G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP03 (2008) 042 [arXiv:0711.3596] [SPIRES].
[15] R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N =4 super-Yang-Mills, Nucl. Phys.B 725 (2005) 275 [hep-th/0412103] [SPIRES]. · Zbl 1178.81202
[16] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys.B 425 (1994) 217 [hep-ph/9403226] [SPIRES]. · Zbl 1049.81644
[17] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys.B 435 (1995) 59 [hep-ph/9409265] [SPIRES].
[18] Z. Bern, L.J. Dixon and D.A. Kosower, One loop corrections to two quark three gluon amplitudes, Nucl. Phys.B 437 (1995) 259 [hep-ph/9409393] [SPIRES].
[19] Z. Bern and A.G. Morgan, Massive loop amplitudes from unitarity, Nucl. Phys.B 467 (1996) 479 [hep-ph/9511336] [SPIRES].
[20] Z. Bern, L.J. Dixon and D.A. Kosower, One-loop amplitudes for e+e−to four partons, Nucl. Phys.B 513 (1998) 3 [hep-ph/9708239] [SPIRES].
[21] C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett.B 645 (2007) 213 [hep-ph/0609191] [SPIRES].
[22] D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev.D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].
[23] W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP04 (2008) 049 [arXiv:0801.2237] [SPIRES]. · Zbl 1246.81170
[24] R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys.B 822 (2009) 270 [arXiv:0806.3467] [SPIRES]. · Zbl 1196.81234
[25] G. Ossola, C.G. Papadopoulos and R. Pittau, Numerical evaluation of six-photon amplitudes, JHEP07 (2007) 085 [arXiv:0704.1271] [SPIRES].
[26] G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, A ssault on the NLO wishlist: pp → ttbb, JHEP09 (2009) 109 [arXiv:0907.4723] [SPIRES].
[27] G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of \(pp \to t\overline t + 2\) jets at next-to-leading order, Phys. Rev. Lett.104 (2010) 162002 [arXiv:1002.4009] [SPIRES].
[28] T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W+W+jj production at the LHC, JHEP12 (2010) 053 [arXiv:1007.5313] [SPIRES].
[29] C.F. Berger et al., Precise predictions for W +4 jet production at the Large Hadron Collider, arXiv:1009.2338 [SPIRES].
[30] Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes, Phys. Rev.D 71 (2005) 105013 [hep-th/0501240] [SPIRES].
[31] Z. Bern, L.J. Dixon and D.A. Kosower, The last of the finite loop amplitudes in QCD, Phys. Rev.D 72 (2005) 125003 [hep-ph/0505055] [SPIRES].
[32] Z. Bern, L.J. Dixon and D.A. Kosower, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev.D 73 (2006) 065013 [hep-ph/0507005] [SPIRES].
[33] C.F. Berger, Z. Bern, L.J. Dixon, D. Forde and D.A. Kosower, Bootstrapping one-loop QCD amplitudes with general helicities, Phys. Rev.D 74 (2006) 036009 [hep-ph/0604195] [SPIRES].
[34] G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP05 (2008) 004 [arXiv:0802.1876] [SPIRES].
[35] P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP04 (2009) 072 [arXiv:0903.0356] [SPIRES].
[36] M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP01 (2010) 040 [arXiv:0910.3130] [SPIRES]. · Zbl 1269.81214
[37] T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP02 (2007) 013 [hep-ph/0609054] [SPIRES].
[38] A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 1. quark-antiquark annihilation, JHEP08 (2008) 108 [arXiv:0807.1248] [SPIRES].
[39] Z. Bern and D.A. Kosower, The computation of loop amplitudes in gauge theories, Nucl. Phys.B 379 (1992) 451 [SPIRES].
[40] Z. Kunszt, A. Signer and Z. Trócsányi, One loop helicity amplitudes for all 2 → 2 processes in QCD and N =1 supersymmetric Yang-Mills theory, Nucl. Phys.B 411 (1994) 397 [hep-ph/9305239] [SPIRES].
[41] S. Catani, M.H. Seymour and Z. Trócsányi, Regularization scheme independence and unitarity in QCD cross sections, Phys. Rev.D 55 (1997) 6819 [hep-ph/9610553] [SPIRES].
[42] Z. Bern, A. De Freitas, L.J. Dixon and H.L. Wong, Supersymmetric regularization, two-loop QCD amplitudes and coupling shifts, Phys. Rev.D 66 (2002) 085002 [hep-ph/0202271] [SPIRES].
[43] A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortschr. Phys.41 (1993) 307 [arXiv:0709.1075] [SPIRES].
[44] J.A.M. Vermaseren, New features of FORM, math-ph/0010025 [SPIRES].
[45] J.A.M. Vermaseren, The FORM project, Nucl. Phys. Proc. Suppl.183 (2008) 19 [arXiv:0806.4080] [SPIRES].
[46] http://www.ugr.es/local/pittau/CutTools.
[47] D.Y. Bardin and G. Passarino, The standard model in the making: precision study of the electroweak interactions, Clarendon Press, Oxford U.K. (1999), p. 685 [SPIRES]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.