zbMATH — the first resource for mathematics

Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. (English) Zbl 1214.65046
The authors consider, in one space dimension, the advection-diffusion equation, but with Canuto-type fractional time derivative and Riesz-type fractional space derivatives. They develop difference approximations for the nonlocal operator corresponding to the equation and its Cauchy resp. initial-boundary value problem. They prove conditional stability in the explicit case and unconditional stability for the implicit approximation and get first-order convergence (and slightly better results for the implicit case) for sufficiently smooth (in the sense of C-spaces) solutions. Their numerical results show that Richardson extrapolation is very helpful in improving the accuracy whereas a technique to reduce the computational effort, the short-memory principle, is less effective.

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
35K15 Initial value problems for second-order parabolic equations
35K20 Initial-boundary value problems for second-order parabolic equations
35R11 Fractional partial differential equations
Full Text: DOI
[1] Burnecki, K., Janczura, J., Magdziarz, M., Weron, A.: Can one see a competition between subdiffusion and Lévy flights? A case of geometric-stable noise. Acta Phys. Pol., B 39, 1043–1054 (2008)
[2] Chen, C., Liu, F., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algorithms 54, 1–21 (2010) · Zbl 1191.65116 · doi:10.1007/s11075-009-9320-1
[3] Ciesielski, M., Leszczynski, J.: Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz–Feller fractional operator. J. Theor. Appl. Mech. 44, 393–403 (2006)
[4] Del-Castillo-Negrete, D.: Fractional diffusion models of nonlocal transport. Phys. Plasmas 13, 082308 (2006) · doi:10.1063/1.2336114
[5] Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractioal differential equations. Nonlinear Dyn. 29, 3–22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[6] Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional adams method. Numer. Algorithms 36, 31–52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[7] Diethelm, K., Walz, G.: Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms 16, 231–253 (1997) · Zbl 0926.65070 · doi:10.1023/A:1019147432240
[8] Deng, W.: Short memory principle and a predictor-corrector approach for fractional differential equations. J. Comput. Appl. Math. 206, 174–188 (2007) · Zbl 1121.65128 · doi:10.1016/j.cam.2006.06.008
[9] Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26, 336–346 (2001) · Zbl 0976.65062
[10] Fulger, D., Scalas, E., Germano, G.: Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Rev., E 77, 021122 (2008) · doi:10.1103/PhysRevE.77.021122
[11] Gorenflo, R., Mainardi, F.: Approximation of Lévy–Feller diffusion by random walk. J. Anal. Appl. (ZAA) 18, 231–246 (1999) · Zbl 0948.60006
[12] Gorenflo, R., Vivoli, A.: Fully discrete random walks for space-time fractional diffusion equations. Signal Process. 83, 2411–2420 (2003) · Zbl 1145.60312 · doi:10.1016/S0165-1684(03)00193-2
[13] Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007) · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[14] Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004) · Zbl 1036.82019 · doi:10.1016/j.cam.2003.09.028
[15] Liu, F., Anh, V., Turner, I., Zhuang, P.: Numerical simulation for solute transport in fractal porous media. Australian and New Zealand Industrial and Applied Mathematics Journal 45(E), 461–473 (2004) · Zbl 1123.76363
[16] Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007) · Zbl 1193.76093 · doi:10.1016/j.amc.2006.08.162
[17] Magdziarz, M., Weron, A.: Fractional Fokker–Planck dynamics: stochastic representation and computer simulation. Phys. Rev., E 75, 016708 (2007) · Zbl 1123.60045 · doi:10.1103/PhysRevE.75.016708
[18] Magdziarz, M., Weron, A.: Competition between subdiffusion and Lévy fights: a Monte Carlo approach. Phys. Rev., E 75, 056702 (2007) · doi:10.1103/PhysRevE.75.056702
[19] Meerschaert, M.M., Scheffler, H., Tadjeran, C.: Finite difference methods for two dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006) · Zbl 1085.65080 · doi:10.1016/j.jcp.2005.05.017
[20] Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004) · Zbl 1126.76346 · doi:10.1016/j.cam.2004.01.033
[21] Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006) · Zbl 1086.65087 · doi:10.1016/j.apnum.2005.02.008
[22] Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000) · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[23] Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1999) · Zbl 0924.34008
[24] Roop, J.P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2. J. Comput. Appl. Math. 193, 243–268 (2006) · Zbl 1092.65122 · doi:10.1016/j.cam.2005.06.005
[25] Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993) · Zbl 0818.26003
[26] Shen, S., Liu, F., Anh, V.: Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order. J. Appl. Math. Comput. 28 , 147–164 (2008) · Zbl 1157.65520 · doi:10.1007/s12190-008-0084-x
[27] Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007) · Zbl 1113.65124 · doi:10.1016/j.jcp.2006.05.030
[28] Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006) · Zbl 1089.65089 · doi:10.1016/j.jcp.2005.08.008
[29] Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002) · Zbl 0999.82053 · doi:10.1016/S0370-1573(02)00331-9
[30] Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22, 87–99 (2006) · Zbl 1140.65094 · doi:10.1007/BF02832039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.