×

Quasigauge spaces with generalized quasipseudodistances and periodic points of dissipative set-valued dynamic systems. (English) Zbl 1213.81161

The authors introduce the families of generalized quasipseudodistances in quasigauge spaces and define three kinds of dissipative set-valued dynamic systems with these families of generalized quasi-pseudodistances and with some families of not necessarily lower semicontinuous entropies. Assuming that quasigauge spaces are left \(K\) sequentially complete (but not necessarily Hausdorff), they prove that for each starting point each dynamic process or generalized sequence of iterations of these dissipative set-valued dynamic systems left converges. They also show that if an iterate of these dissipative set-valued dynamic systems is left quasiclosed, then these limit points are periodic points. Examples illustrating ideas, methods, definitions, and results are constructed.

MSC:

81S22 Open systems, reduced dynamics, master equations, decoherence
37L99 Infinite-dimensional dissipative dynamical systems
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[2] doi:10.1017/S0004972700041046 · Zbl 0278.54046 · doi:10.1017/S0004972700041046
[3] doi:10.1007/BF01301400 · Zbl 0472.54018 · doi:10.1007/BF01301400
[6] doi:10.1023/A:1006559507624 · Zbl 0924.54037 · doi:10.1023/A:1006559507624
[7] doi:10.1002/mana.19921570103 · Zbl 0784.54027 · doi:10.1002/mana.19921570103
[8] doi:10.1215/S0012-7094-69-03610-2 · Zbl 0176.51902 · doi:10.1215/S0012-7094-69-03610-2
[9] doi:10.2307/2371174 · Zbl 0002.05503 · doi:10.2307/2371174
[10] doi:10.1016/S0165-0114(98)00368-6 · Zbl 0961.54027 · doi:10.1016/S0165-0114(98)00368-6
[11] doi:10.1016/S0165-0114(97)00034-1 · Zbl 0986.54015 · doi:10.1016/S0165-0114(97)00034-1
[12] doi:10.1090/S0002-9939-00-05838-X · Zbl 0966.47040 · doi:10.1090/S0002-9939-00-05838-X
[17] doi:10.2307/2042331 · Zbl 0446.47049 · doi:10.2307/2042331
[22] doi:10.1016/0893-9659(95)00089-9 · Zbl 0837.54011 · doi:10.1016/0893-9659(95)00089-9
[25] doi:10.1090/S0002-9947-1976-0394329-4 · doi:10.1090/S0002-9947-1976-0394329-4
[27] doi:10.1016/S0362-546X(01)00395-9 · Zbl 1042.54506 · doi:10.1016/S0362-546X(01)00395-9
[28] doi:10.1016/0022-247X(74)90025-0 · Zbl 0286.49015 · doi:10.1016/0022-247X(74)90025-0
[29] doi:10.1016/S0893-9659(02)00044-7 · Zbl 1009.37006 · doi:10.1016/S0893-9659(02)00044-7
[31] doi:10.1017/S1446788700036995 · doi:10.1017/S1446788700036995
[32] doi:10.1007/BF00276493 · Zbl 0252.93002 · doi:10.1007/BF00276493
[34] doi:10.1007/BF01764426 · Zbl 0393.90109 · doi:10.1007/BF01764426
[35] doi:10.1137/0314062 · Zbl 0363.90145 · doi:10.1137/0314062
[39] doi:10.1016/j.na.2009.03.076 · Zbl 1203.54051 · doi:10.1016/j.na.2009.03.076
[40] doi:10.1016/j.na.2009.07.024 · Zbl 1185.54020 · doi:10.1016/j.na.2009.07.024
[41] doi:10.1016/j.aml.2010.10.015 · Zbl 1206.54068 · doi:10.1016/j.aml.2010.10.015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.