×

zbMATH — the first resource for mathematics

Boundary element analysis of stress distribution around a crack in plane micropolar elasticity. (English) Zbl 1213.74306
Summary: We use the boundary element method to find a semi-analytical solution to the problem of stress concentration around a crack in plane micropolar elasticity. We provide an example demonstrating the effect of material microstructure.

MSC:
74S15 Boundary element methods applied to problems in solid mechanics
74A35 Polar materials
74G70 Stress concentrations, singularities in solid mechanics
74L15 Biomechanical solid mechanics
74R10 Brittle fracture
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Eringen, A.C., Linear theory of micropolar elasticity, J. math. mech., 15, 909-923, (1966) · Zbl 0145.21302
[2] Nowacki, W., Theory of asymmetric elasticity, (1986), Polish Scientific Publishers Warsaw · Zbl 0604.73020
[3] Lakes, R., Experimental methods for study of Cosserat elastic solids and other generalized elastic continua, (), 1-22 · Zbl 0900.73005
[4] Lakes, R., Dynamical study of couple stress effects in human compact bone, J. biomed. eng., 104, 6-11, (1982)
[5] Nakamura, S.; Lakes, R., Finite element analysis of stress concentration around a blunt crack in a Cosserat elastic solid, Comp. methods appl. mech. eng., 66, 257-266, (1988) · Zbl 0618.73113
[6] Lakes, R.; Nakamura, S.; Behiri, J.; Bonfield, W., Fracture mechanics of bone with short cracks, J. biomech., 23, 967-975, (1990)
[7] Kupradze, V.D., Three-dimensional problems of the mathematical theory of elasticity and thermoelasticity, (1979), North-Holland Amsterdam · Zbl 0421.73009
[8] Iesan, D., Existence theorems in the theory of micropolar elasticity, Int. J. eng. sci., 8, 777-791, (1970) · Zbl 0214.24901
[9] Schiavone, P., Integral equation methods in plane asymmetric elasticity, J. elasticity, 43, 31-43, (1996) · Zbl 0878.73015
[10] Potapenko, S.; Schiavone, P.; Mioduchowski, A., Antiplane shear deformations in a linear theory of elasticity with microstructure, Zamp, 56, 516-528, (2005) · Zbl 1065.74009
[11] Potapenko, S.; Schiavone, P.; Mioduchowski, A., On the solution of mixed problems in antiplane micropolar elasticity, Math. mech. solids, 8, 151-160, (2003) · Zbl 1034.74010
[12] Potapenko, S., A generalised Fourier approximation in anti-plane micropolar elasticity, J. elasticity, 81, 159-177, (2005) · Zbl 1090.74004
[13] Potapenko, S., Fundamental sequences of functions in the approximation of solutions to mixed boundary-value problems of Cosserat elasticity, Acta mech., 177, 61-71, (2005) · Zbl 1078.74004
[14] Mühlhaus, H-B.; Pasternak, E., Path independent integrals for Cosserat continua and application to crack problems, Int. J. fract., 113, 21-26, (2002)
[15] Atkinson, C.; Leppington, F.G., The effect of couple stresses on the tip of a crack, Int. J. solids struct., 13, 1103-1122, (1977) · Zbl 0368.73083
[16] De Borst, R.; van der Giessen, E., Material instabilities in solids, (1998), John Wiley Chichester
[17] Yavari, A.; Sarkani, S.; Moyer, E., On fractal cracks in micropolar elastic solids, J. appl. mech., 69, 45-54, (2002) · Zbl 1110.74775
[18] Diegele, E.; Eisasser, R.; Tsamakis, C., Linear micropolar elastic crack-tip fields under mixed mode loading conditions, Int. J. fract., 4, 309-339, (2004) · Zbl 1187.74171
[19] Garajeu, M.; Soos, E., Cosserat models versus crack propagation, Math. mech. solids, 8, 189-218, (2003) · Zbl 1119.74548
[20] Chudinovich, I.; Constanda, C., Variational and potential methods in the theory of bending of plates with transverse shear deformation, (2000), Chapman&Hall/CRC Boca Raton, London, New York, Washington, DC · Zbl 0960.35101
[21] Shmoylova, E.; Potapenko, S.; Rothenburg, L., Weak solutions of the interior boundary value problems of plane Cosserat elasticity, Zamp, 57, 506-522, (2006) · Zbl 1088.74010
[22] Shmoylova, E.; Potapenko, S.; Rothenburg, L., Weak solutions of the exterior boundary value problems of plane Cosserat elasticity, J. int. equat. appl., 19, 71-92, (2007) · Zbl 1387.35576
[23] Shmoylova, E.; Potapenko, S.; Rothenburg, L., Stress distribution around a crack in plane micropolar elasticity, J. elasticity, 86, 19-39, (2007) · Zbl 1104.74057
[24] Brebbia, C.A., The boundary element method for engineers, (1978), Pentech Press London · Zbl 0414.65060
[25] Aliabadi, M.H.; Brebbia, C.A., Advances in boundary element methods for fracture mechanics, (1993), Computational Mechanics Publications, Elsevier Applied Science Southampton, Boston, London, New York · Zbl 0787.00002
[26] Sneddon, I., Crack problems in the classical theory of elasticity, (1969), Wiley New York · Zbl 0201.26702
[27] Gaul, L.; Kögl, M.; Wagner, M., Boundary element methods for engineers and scientists, (2003), Springer-Verlag Berlin, Heidelberg, New York · Zbl 1068.74613
[28] Bouyge, F.; Jasiuk, I.; Ostoja-Starzewski, M., A micromechanically based couple-stress model of an elastic two-phase composite, Int. J. solids struct., 38, 1721-1735, (2001) · Zbl 1003.74006
[29] Jasiuk, I.; Ostoja-Starzewski, M., Modeling of bone at a single lamella level, Biomech. model. mechanobiol., 3, 67-74, (2004)
[30] F. Bouyge, I. Jasiuk, M. Ostoja-Starzewski, A micropolar model of trabecular bone, in: Proc. Bioeng. Conf., Big Sky, Montana, USA., June 16-20, 1999. · Zbl 1003.74006
[31] Miannay, D., Fracture mechanics, (1998), Springer New York, Berlin
[32] Janssen, M., Fracture mechanics, (2004), Spon Press London, New York
[33] Park, H.; Lakes, R., Cosserat micromechanics of human bone: strain redistribution by a hydration sensitive constituent, J. biomech., 19, 385-397, (1986)
[34] Potapenko, S.; Schiavone, P.; Mioduchowski, A., Generalized Fourier series solution of torsion of an elliptic beam with microstructure, Appl. math. lett., 17, 189-192, (2004) · Zbl 1094.74036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.